人脸识别,计算机视觉中经典的人脸检测算法,以基于机器学习的Matlab代码为基础。
经典算法在计算机视觉中的人脸检测技术
相关推荐
计算机视觉技术在图像处理与识别中的应用
1.图像处理概述2.MATLAB编程基础3.图像预处理技术4.图像分割方法5.图像修复与校正技术6.图像特征提取方法7.图像识别技术8.图像数据压缩与编码技术9.实际应用案例
Matlab
0
2024-08-13
计算机视觉技术在可视化数据挖掘中的应用
赵星总结了近年来国际上涌现的几类可视化数据挖掘技术,提出了将计算机视觉技术应用于该领域的建议。
数据挖掘
2
2024-07-17
现代计算机视觉技术的探索与实践
这本书以直观易懂的方式全面展示了计算机视觉的各个方面,并提供足够的细节,以便构建实用的应用程序。读者通过第一手经验和多种数学方法学习到了已被证明有效的技术。每本书附带的CD-ROM包含编程实践的源代码、彩色图像和说明性电影。内容全面且时效性强,涵盖了实践重要性或理论重要性的关键主题,逐步深入讨论。应用调查描述了诸如基于图像的渲染和数字图书馆等多个重要应用领域。书中详细解析了许多重要算法。
Access
0
2024-08-05
计算机视觉课程作业.zip
利用k-means算法对图像进行色彩和纹理分割,内含详尽实验报告和Matlab代码,撰写过程历时10天,深入分析每一步。
Matlab
0
2024-09-22
【医疗技术】基于计算机视觉的视网膜血管检测及Matlab代码
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划以及无人机等多个领域的Matlab仿真应用,使得视网膜血管检测技术更加精准和高效。
Matlab
0
2024-09-01
深度学习技术在计算机视觉与VSLAM领域的应用探析
深度学习技术在计算机视觉与VSLAM领域的应用探析。此处集结了关于计算机视觉、3D视觉、VSLAM、点云、三维重建、深度学习、结构光、机械臂抓取等方向的最新论文,来源包括公众号《3D视觉工坊》、《计算机视觉工坊》及其他优秀公众号文章。更新截至2021年4月17日。作者:3D视觉工坊所有投稿作者。
Matlab
0
2024-09-28
模式匹配技术在计算机科学中的应用
【模式匹配算法】是计算机科学领域中一项重要的技术,被广泛用于数据库查询、文本分析和生物信息学等领域。在数据库中,模式匹配技术能够高效地从大数据集中找出符合特定规则或模式的记录,极大地提升了数据检索效率。深入探讨了模式匹配算法的实现原理,并通过一个具体的C语言程序展示了其实现过程。程序的核心函数是NUM,通过输入主字符串和模式字符串,计算出模式字符串在主字符串中出现的次数。通过这个案例,读者可以理解模式匹配的基本操作及其在实际应用中的重要性。未来,我们还可以探索更复杂的算法,如KMP算法、Boyer-Moore算法和Rabin-Karp算法,它们在处理大规模数据时表现更为优异。
SQLServer
0
2024-08-25
SVHN_Classic 使用经典计算机视觉技术从Google Street View门牌号图像中检测和分类数字
SVHN_Classic挑战:主要利用经典的图像处理和计算机视觉技术,在没有神经网络的情况下为SVHN数据集实现了优秀的分类器。解决方案:通过MSER功能和数字边界框的笔划宽度变化检测每个图像中的数字,并使用K最近邻方法进行分类。在验证集上,平均F1得分达到80%。运行文件顺序:使用Matlab的detect_text.m提取每个图像中每个数字的边界框。图像来自“额外” tar数据集。使用Python 3的convert_to_h5py.py转换digitStruct.mat中的训练集数据。使用Python 3的train_svhn.py训练分类器并保存模型。通过混淆矩阵结果选择最佳模型,选择k = 31的k个最近邻居。验证集上的最佳F1分数平均为80%。保存了模型“ knn_svhn.pkl”。
Matlab
1
2024-07-24
MATLAB代码拼接分块图像的计算机视觉技术
该项目详细介绍了使用MATLAB进行分块图像拼接的计算机视觉技术。讲义幻灯片和作业内容由UIUC计算机视觉专家Svetlana Lazebnik提供。计算机视觉是教授机器如何看的学科,涵盖了3D几何和物体识别两大主题。学生将通过课程理解视觉文献,并实现现代视觉系统的核心组件。先修条件包括概率论、线性代数和微积分基础,MATLAB编程技能尤为重要。
Matlab
3
2024-07-16