因果关系研究数据
投资电子邮件随机化试验(RCT)的数据集,用于因果关系研究。
统计分析
4
2024-04-30
Granger因果关系检验的应用与发展
格兰杰(Granger)于1969年提出了一种基于“预测”的因果关系(格兰杰因果关系),后经西蒙斯(1972, 1980)的发展,格兰杰因果检验作为一种计量方法已经被经济学家们普遍接受并广泛使用,尽管在哲学层面上人们对格兰杰因果关系是否是一种“真正”的因果关系还存在很大的争议。
算法与数据结构
0
2024-10-31
可靠性数据的收集与分析故障数据的因果关系图解析
故障数据的因果图分析是一种系统的方法,用于揭示故障根源。树干代表主要故障,大树枝上的原因是导致故障的根本因素,而小树枝上的原因则是大树枝所列因素的详细解释。因果图的制作需要确保故障描述具体明确,并吸收多方意见进行深入分析和验证。分类时需合理归类,标记主要原因,并在现场验证后提出改进措施。
SQLServer
2
2024-07-24
Matlab典型相关分析与状态空间Granger因果关系计算工具箱实现
展示了典型相关分析(CCA)在MATLAB中的实现代码,特别是通过小型MATLAB工具箱ssgc来演示如何计算状态空间Granger因果关系。
典型相关分析(CCA)用于研究多个变量之间的相关性,常用于多变量统计分析中。
状态空间Granger因果关系则是通过动态系统模型分析时间序列数据之间的因果关系。本工具箱通过状态空间模型来描述和计算Granger因果关系的强度和方向。该工具箱简洁易用,能够帮助用户快速实现这些高级分析功能。
代码示例如下:
% 输入数据:time_series_data
% 计算典型相关分析
[CCA_r,CCA_p] = cca(time_series_data);
% 计算状态空间Granger因果关系
[Granger_result] = ssgc(time_series_data);
Matlab
0
2024-11-06
优化MATLAB开发的隐有限次优因果关系滤波器
针对MATLAB开发的隐有限次优因果关系滤波器进行了优化。计算了使误差系统H-无穷范数最小化的最优逆滤波器。
Matlab
2
2024-07-16
BIC自适应获取构建模型所需时间序列长度的格兰杰因果关系判别
格兰杰因果关系(Granger causality)是基于统计假设检验的一种方法,用于判断一个变量是否能够预测另一个变量的变化。具体来说,如果基于变量x和变量y的过去值的y的自回归模型比仅基于y的过去值的模型更准确地预测y的当前值,那么可以说变量x对变量y存在格兰杰因果关系。在这一过程中,使用BIC(Bayesian Information Criterion)方法来动态调整时间序列的历史长度,以构建最优的预测模型。
算法与数据结构
1
2024-07-30
案例分析保温杯评分的影响因素及消费者建议
使用这些数据可以建立回归模型,分析影响保温杯评分的各种因素,同时向消费者提供购买建议,以帮助他们选择最合适的产品。
算法与数据结构
2
2024-07-17
失效机器对 MapReduce 系统的影响
失效机器的影响
在排序程序执行过程中,我们模拟了机器失效的情况,故意停止了 200 台工作机器。由于 MapReduce 的底层调度机制,系统能够迅速在这些机器上重启新的工作进程,继续处理任务。虽然一些已完成的 Map 任务因进程停止而丢失,需要重新执行,但这仅增加了 5% 的运行时间,整个计算过程在 933 秒内完成。
MapReduce 库的应用
自 2003 年首次发布以来,MapReduce 库经历了显著的改进,包括输入数据本地优化和动态负载均衡。该库已被广泛应用于 Google 的各种领域,包括:
大规模机器学习
Google News 和 Froogle 产品的集群问题
从公共查询产品中提取数据
从网页中提取有用信息
大规模图形计算
MapReduce 库的易用性和可扩展性使其成为开发人员的宝贵工具,即使是没有分布式系统经验的程序员也可以轻松开发并行处理应用程序。
Hadoop
3
2024-05-19