随着信息技术的进步,实时数据库在监控系统中扮演关键角色。特别是在集中监测控制系统和远程分布式测控系统中,需要及时采集、存储和分析大量实时数据(如电压、电流、温度等)。然而,面对海量数据的实时处理,如何保证系统的准确性和实时性是一个挑战。为了满足不同测控系统的需求,提出了一种灵活的数据存盘间隔设置方法(ST可选1秒、2秒、3秒等),并引入了“两次读取”策略。这种策略包括粗读和细读两个阶段,通过快速扫描和详细分析提高了数据处理效率,减少了对系统资源的需求。另外,文章还介绍了基于能量谱函数的时间子序列相似性分析方法,用于识别系统异常行为和发现潜在规律。这些技术不仅能够加速实时数据库的在线数据挖掘,还有助于提升系统性能和数据分析效果。
大数据实时数据库在线数据挖掘技术探讨
相关推荐
在线教育的大数据实战案例(04实时实现)
随着技术的不断进步,大数据在在线教育中的应用愈发重要。将深入探讨实时数据分析在教育过程中的具体应用,以及其带来的变革和优势。从课堂互动到个性化学习路径的定制,大数据技术正在重新定义教育体验。
flink
0
2024-08-03
大数据实时处理技术比较与应用报告
在大数据实时处理领域,Flume、Kafka和Spark Streaming是常用的数据采集、传输与处理工具。本报告详细阐述了如何将这三个组件结合使用,构建一个高效的数据流处理系统。一、Flume与Spark Streaming的结合:Flume是Apache开发的一个分布式、可靠且用于有效收集、聚合和移动大量日志数据的系统。安装配置Flume后,通过测试验证其成功安装。集成Spark Streaming需要将spark-streaming-flume-sink_2.11-2.4.2.jar添加到Flume安装目录的lib文件夹,并设置正确的权限。配置文件中定义SparkSink,并编写Flume源、通道和接收器配置,实现数据从源头流向Spark Streaming。代码层面定义自定义的Spark Sink进行实时处理。二、Kafka的安装部署:Kafka是一个分布式流处理平台,用于构建实时数据管道和流应用。安装部署Kafka并创建主题。启动Kafka服务并确保可用性,创建生产者和消费者从主题发送和接收消息。三、Kafka与Spark Streaming的整合:在Spark Streaming应用中添加Kafka客户端依赖,支持与Kafka的交互。
kafka
0
2024-09-14
Storm实时数据处理技术详解
本书详细介绍了基于Storm的开发环境搭建和实时系统测试的实用方法及实战案例,以及应用最佳实践将系统部署至云端的方法。你将学习到如何构建包含统计面板和可视化功能的实时日志处理系统。通过集成Storm、Cassandra、Cascading和Hadoop,了解如何建立实时大数据解决方案用于文字挖掘。书中涵盖了利用不同编程语言在Storm集群中实现特定功能,并最终将解决方案部署至云端的方法。每一步都应用了成熟的开发和操作实践,确保产品交付的可靠性。
Storm
0
2024-10-12
大数据实践—Storm流计算实时异常监控
采用Storm流计算构建日志收集系统,实时汇聚日志数据,并结合离线数据分析,通过预先设定的规则对数据进行异常监测,实现实时告警和及时响应。
算法与数据结构
9
2024-04-30
大数据实时处理简介Spark入门指南
大数据实时介绍(图说)使用Spark SQL时必须导入以下依赖包:org.apache.spark:spark-sql_2.10:1.6.1 和 org.apache.spark:spark-hive_2.10:1.6.1 。
spark
0
2024-08-30
01大数据项目之Spark实时数据采集
本节内容将围绕大数据项目之Spark实时数据采集进行详细的知识点总结。离线计算是指通过批处理的方式计算已知的所有输入数据,数据在计算前已经全部就位,不会发生变化,数据量大且保存时间长,在大量数据上进行复杂的批量运算。实时计算是指通过流处理方式计算当日的数据,例如使用Spark Streaming等技术。实时计算需要通过代码,往往需要对接多种数据容器完成,相对开发较为复杂。
Hadoop
0
2024-08-08
Oracle JMS 实时数据获取与数据库间实时复制模式
随着Oracle JMS的应用,用户可以实时获取Oracle数据,并通过数据库间的实时复制模式实现数据的同步和更新。
Oracle
2
2024-07-19
实时数据处理工具——Storm高效处理实时数据流
Storm,作为一种实时流处理框架,自2016年以来一直在业界广泛应用。其高效处理实时数据流的能力,使其成为许多大型数据处理系统的首选工具之一。
Storm
0
2024-08-21
GoldenGate实时数据应用策略
GoldenGate实时数据应用关键策略
确保数据完整性
降低数据延迟
提高数据可用性
简化数据管理
保护数据安全
Oracle
6
2024-05-26