MatConvNet是为MATLAB设计的一个CNN库,详细信息可访问https://www.vlfeat.org/matconvnet/mfiles/vl_nnconv/。VL_NNCONV-CNN函数用于计算图像X与滤波器组F和偏置B的卷积。当偏置B为空时不添加偏置,当滤波器组F为空时不过滤图像,但仍添加偏差并进行下采样和填充。X是hxwxcxn维度的数组,其中(H,W)为图像堆栈的高度和宽度,C为特征通道数,N为批处理中的图像数量。F是FW x FH x FC x K维度的数组,其中(FH,FW)为滤波器的高度和宽度,K为滤波器数量。
MatConvNet 使用VL_NNCONV-CNN函数进行卷积操作
相关推荐
使用Blackman窗函数进行仿真
在仿真过程中,利用Matlab简单实现了Blackman窗函数的应用。
Matlab
0
2024-08-29
ECCV16单图像去雾MatConvNet模型代码-Multi-scale-CNN-Dehazing
MatConvNet基于ECCV16论文的实现,采用多尺度卷积神经网络进行单幅图像去雾。我们提供了测试演示和预训练模型,适用于Win7电脑。
Matlab
1
2024-08-01
使用重叠保存方法进行块卷积执行块卷积的重叠保存方法-MATLAB开发
在重叠保存方法中,输入数据块大小为N=L+M-1,DFT和IDFT的长度为L。每个数据块由前一个块的最后M-1个数据点和L个新数据点组成,形成一个长度为N的数据序列。为每个数据块计算一个N点DFT。通过附加L-1个零来增加FIR滤波器的脉冲响应长度,并且一次计算并存储序列的N点DFT。第m个数据块的N点DFT的乘法产生:Ym(k)=h(k)Xm(k)。由于数据记录的长度为N,Ym(n)的前M-1个点被混叠破坏,必须丢弃。Ym(n)的最后L个点与线性卷积的结果完全相同。为避免混叠造成的数据丢失,保存每条数据记录的最后M-1个点,这些点成为后续记录的前M-1个数据点。为了开始处理,第一条记录的第一个M-1点被设置为零。给出了来自IDFT的结果数据序列,其中前M-1个点由于混叠而被丢弃。
Matlab
0
2024-08-11
使用多列卷积神经网络进行人群计数
MindSpark Hackathon 2018利用MCNN在ShanghaiTech数据集上进行人群计数。这是CVPR 2016论文“通过多列卷积神经网络进行单图像人群计数”的非正式实施。预测工作正在进行中,同时进行热图生成。安装Tensorflow、Keras和OpenCV,并克隆此存储库以使用预训练模型。您可以从以下位置下载ShanghaiTech数据集:投寄箱://www.dropbox.com/s/fipgjqxl7uj8hd5/ShanghaiTech.zip dl
Matlab
2
2024-08-01
通用卷积函数优化
分享一个通用卷积函数的代码,适用于Matlab,并秉持开源精神,以促进共享与创新。
Matlab
0
2024-08-12
使用Matlab的CNN源码进行开放集域适配新方法探索
CNN源码在Matlab上实现的开放集域适应,用于图像分类任务。该方法链接到ICC'17论文,支持在Matlab 2013b和Visual Studio 2013/2015下的Caffe二进制文件编译。用户可以通过调整输入参数来激活域自适应和开放集协议,优化分类任务。对于开放集协议,需要确保numSrcClusters参数匹配类或视角的数量,以有效识别未知类。该工具还支持可视化ATI优化过程中的附加结果数据。
Matlab
0
2024-09-25
Implementing GAN with MatConvNet
In this guide, we explore how to implement GAN (Generative Adversarial Networks) using MatConvNet. MatConvNet is a MATLAB toolbox that simplifies deep learning network construction, enabling users to build GAN models with ease. This tutorial covers the setup, installation, and steps needed to create a basic GAN model within MatConvNet. Step-by-step instructions are provided to ensure clarity and smooth progress through the model-building process. GAN training involves two primary components: the generator and the discriminator, which are explained in detail along with examples.
Matlab
0
2024-11-05
基于FFT的卷积利用FFT方法进行离散卷积-MATLAB开发
与MATLAB中的CONV、CONV2和CONVN实现相反,CONVNFFT利用傅立叶变换(FT)卷积定理,即卷积的傅立叶变换等于输入函数的傅立叶变换乘积。在1-D情况下,其复杂度为O((na+nb)*log(na+nb)),其中na和nb分别为A和B的长度。此函数支持多维度的卷积操作,对于较大的数据输入,在1D情况下特别适用,相比滑动窗口卷积,性能略低。
Matlab
0
2024-08-30
使用BE进行RMAN数据库恢复操作
本视频记录了在Linux 5.1系统下使用华赛备份软件对Oracle 10g数据库进行灾难恢复的过程。
Oracle
2
2024-07-16