针对智能健康管理的实际需求,本研究探讨了智能医疗中的生理特征数据分析方法。通过引入决策树算法进行电子病例数据挖掘,成功实现了糖尿病与心力衰竭的早期识别。所采用的CART树方法以基尼系数作为分类标准,相较于ID3与C4.5,极大简化了树的结构。此外,为减少模型过拟合,还引入了基于误差控制(CCP)的后剪枝方法和基于Bagging的集成学习方法。通过建立多棵CART树形成随机森林,显著提升了算法的分类能力。仿真结果显示,该算法在预测糖尿病和心力衰竭方面的准确率分别达到了89.01%和99.55%,AUC值分别为0.94和0.99,相较于支持向量机(SVM)算法有显著提升。
基于决策树算法的生理特征数据分析方法探究
相关推荐
数据挖掘中的决策树算法探究
大学PPT中详解数据挖掘中决策树的基本原理,特别是ID3算法及其在创建二叉树过程中的迭代过程。
数据挖掘
0
2024-08-30
决策树ID算法的案例分析-决策树算法实例
决策树ID3算法的案例分析在技术领域具有重要意义。
算法与数据结构
1
2024-07-13
决策树分析方法概述
决策树是一种决策分析方法,利用已知情况概率,构建决策树以评估项目风险和可行性。在机器学习中,决策树是预测模型,用于映射对象属性与值关系。使用ID3、C4.5和C5.0等算法生成决策树,基于信息熵理论衡量系统的混乱程度。该方法以树形结构表示,每个内部节点表示属性测试,分支代表测试输出,叶节点代表类别。
算法与数据结构
2
2024-07-18
基于决策树方法的煤炭物流客户分析
随着自动柜员机(ATM)的普及,如何优化其部署以提高利用率成为重要课题。运用数据挖掘和决策树ID3算法,分析现有ATM部署区域,识别高利用率区域特征,构建ATM选址模型,为金融机构提供高效ATM部署参考。
数据挖掘
3
2024-05-14
故障分析中的决策树算法
该文档探讨了在机械故障系统分析中应用决策树算法。该算法可用于识别和分类影响系统性能的故障模式。
数据挖掘
4
2024-05-21
决策树算法详解
决策树算法详细介绍了如何利用MATLAB实现决策树算法,该算法在数据分析和机器学习中具有广泛的应用。
Matlab
0
2024-09-28
数据挖掘决策树算法
决策树基本概念
一种树形结构,用于表示一个目标变量和一个或多个特征变量之间的关系。
节点代表特征,分支代表决策,叶节点代表分类结果。
决策树算法
一种分类和回归的监督学习算法。
通过递归分割数据,创建决策树。
常用的决策树算法包括 ID3、C4.5 和 CART。
决策树研究问题
预测:基于给定的特征,预测一个目标变量的值。
分类:将数据点分配到预定义的类别。
回归:预测连续变量的值。
主要参考文献
决策树的原理与应用
决策树算法的实现
数据挖掘
2
2024-04-30
决策树分析.zip
决策树是一种广泛应用于数据挖掘和机器学习的算法,主要用于分类任务。在“西电数据挖掘作业_天气决策树”中,我们可以看到这是一个关于利用决策树模型预测天气状况的课程作业。该作业涉及从气象数据中提取特征,构建决策树模型,并利用模型对未来的天气进行预测。决策树的学习过程包括数据预处理、选择分裂属性、决策树构建、剪枝处理以及模型评估与优化。通过分析和理解“决策树分析”文件中的内容,可以深入了解决策树的原理及其在实际问题中的应用。
数据挖掘
0
2024-08-17
打垒球的决策表分析-决策树算法
决策表中包含天气、温度、湿度、风速等多个因素,用于判断是否适合进行打垒球活动。例如,当天气为晴、温度炎热、风速弱时,取消活动;而在阴天、温度寒冷、风速正常时,可以进行打垒球。
算法与数据结构
0
2024-09-14