为解决大数据环境下的数据挖掘难题,研究了基于Spark核心引擎的数据挖掘引擎。利用Spark的内存计算算子,实现了多个传统数据挖掘算法的并行计算,使其能在集群环境中高效运行。采用系统分层方法设计了数据挖掘系统,构建了完整的大数据挖掘平台。实验证明,基于Spark的并行计算能显著缩短执行时间,在大数据挖掘应用中表现优异。
基于大数据的数据挖掘引擎研究
相关推荐
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
6
2024-09-13
基于大数据的用户流量预测研究
随着移动网络的迅猛发展,用户面向的服务不断增加。在竞争激烈的市场中脱颖而出,提供高质量的服务至关重要。
数据挖掘
11
2024-08-03
基于数据挖掘的选线判据改进研究
针对传统选线判据无法精确识别干扰信号、可能导致频繁误跳闸的问题,本研究利用数据挖掘中的K-means算法进行了改进。通过对某支路历史数据的聚类分析,成功区分漏电真零序电流与干扰信号,显著提升了选线判据的准确性。
数据挖掘
7
2024-07-13
基于机器学习的数据挖掘算法研究
数据挖掘是从海量数据中提取有价值知识的过程,其中决策树作为一种广泛应用的机器学习算法,被广泛应用于实际问题中。本研究详细探讨了基于决策树的数据挖掘算法的技术原理、实现方法及其在不同领域的应用。决策树通过一系列规则划分数据集,构建分类模型,适用于信用评估、医疗诊断等多个领域。研究还探讨了决策树算法的优势和局限性,以及相关的改进策略如CART和随机森林等。
数据挖掘
8
2024-07-20
数据挖掘器基于网络爬虫的搜索引擎
这个项目是一个基本的网络爬虫,可以将结果输出到MySQL数据库。其主要目的是:1) 解析维基百科中的酒精饮料和食物列表;2) 将每个条目的第一段添加到数据库中;3) 查询数据库以获取相关术语,并将相似的酒精饮料分组在一起。
数据挖掘
10
2024-07-17
Web数据挖掘与个性化搜索引擎的研究
随着互联网技术的发展,对Web数据挖掘和个性化搜索引擎的研究日益深入。
数据挖掘
10
2024-07-15
基于分层线性模型的学生数据挖掘研究
本研究以教育数据挖掘的通用自变量为基础,结合官方考试评估报告,建立了客观评价学生能力提升的模型。
数据挖掘
9
2024-05-26
基于 ICA 的异常数据挖掘算法研究
提出了基于影响函数的异常数据检测方法,该方法通过投影分析来分离观测数据中的异常成分,有效消除脉冲噪声。实验结果验证了该方法在异常数据检测方面的可靠性和有效性。
数据挖掘
9
2024-05-28
基于MapReduce的增量数据挖掘技术研究
频繁项集挖掘在数据挖掘中占据重要地位,传统的Apriori算法和FP增长算法常用于此。然而,传统算法难以处理频繁更新的数据库,使用IMBT数据结构解决了这一问题,但存储和效率问题仍然显著。基于MapReduce的增量数据挖掘技术应运而生,显著提高了运行效率和存储管理能力。通过对比实验,验证了其相对于传统方法的优越性。
数据挖掘
7
2024-07-13