数据仓库是企业级的,为整个企业各部门提供决策支持;而数据集市则是部门级的服务,主要为局部管理人员提供支持,又称部门级数据仓库。数据集市包括独立数据集市和从属数据集市。
数据仓库与数据集市的区别及入门指南
相关推荐
数据仓库建设的演进过程与产品区别
数据仓库的建设是一个不断演进的过程,而非简单的产品。它通过统一处理和管理来自多个数据源的数据,并通过灵活的展现方式支持决策。数据仓库在技术进步中不断演进,成为管理和决策支持的重要工具。
Oracle
0
2024-09-28
SQL_Server_2008基础教程数据仓库与数据集市详解
数据仓库是企业存储所有数据的数据库,用户可以统一访问。企业可能拥有不同时间产生的大量数据,存储在不同数据库或文件中,由各种数据库管理系统管理,包括关系型、层次型和网状型。数据集市则是部门级数据的存储,仅供部分用户访问。
SQLServer
0
2024-09-23
风险数据集市汇总层数据仓库建模方法论
风险数据集市汇总层数据仓库建模
在风险数据集市中,汇总层扮演着至关重要的角色。它负责将来自基础层的数据进行整合和汇总,为上层应用提供高层次的聚合视图。
汇总层建模方法论
维度建模: 采用星型或雪花模型,以事实表为中心,连接多个维度表。维度表提供业务上下文,事实表存储关键指标。
聚合粒度: 根据业务需求确定合适的聚合粒度,如时间、产品、客户等。
预计算: 预先计算常用的聚合指标,提高查询性能。
增量更新: 采用增量更新机制,高效更新汇总数据。
汇总层建模的关键考虑因素
业务需求:确定需要哪些指标和维度。
数据量:考虑数据规模和查询性能。
数据更新频率:选择合适的更新策略。
数据质量:确保数据的准确性和一致性。
汇总层建模的优势
简化数据访问:提供高层次的聚合视图,方便用户查询和分析。
提高查询性能:预计算聚合指标,加速数据查询。
支持数据探索:提供多维分析能力,支持用户深入挖掘数据价值。
算法与数据结构
4
2024-05-20
数据仓库、OLAP、数据挖掘、统计分析的关系与区别
数据仓库:存储历史数据,为数据分析提供基础。
OLAP(联机分析处理):基于数据仓库构建的多维数据结构,支持快速、交互式数据分析。
数据挖掘:从大数据中提取模式和知识。
统计分析:数据分析的一种方法,使用数学和统计技术分析数据。
关系:- 数据仓库是数据挖掘和统计分析的基础。- OLAP增强了数据仓库的分析能力。- 数据挖掘和统计分析是数据仓库利用的主要方法。
区别:- 目的:数据仓库存储数据,OLAP支持快速分析,数据挖掘提取知识,统计分析检验假设。- 方法:OLAP使用多维数据模型,数据挖掘使用机器学习算法,统计分析使用统计推断。
数据挖掘
6
2024-05-25
数据挖掘与数据仓库入门教程
数据挖掘和数据仓库是信息技术领域中的重要组成部分,尤其对于初学者来说,理解并掌握这两个概念是进入数据分析世界的必经之路。本教程提供一个全面的入门指南,帮助初学者建立起坚实的基础。
数据挖掘(Data Mining)是通过应用算法和技术从大量数据中发现有价值信息的过程。它涉及到统计学、机器学习、人工智能等多个学科,目标是揭示隐藏在数据背后的模式、趋势和关联。
在本教程中,你可以学习到如何使用不同的数据挖掘方法,如分类规则、关联规则和聚类规则。分类规则通过对已有数据进行分析,创建模型来预测未知数据的类别。例如,第9章和第9章(续)可能会讲解决策树、贝叶斯分类、支持向量机等常见分类方法,这些方法在预测分析、市场营销等领域有广泛应用。
关联规则则是寻找数据项之间的有趣关系,如“买了尿布的人很可能也会买啤酒”。第8章-1和dw and dm chp8(关联规则).doc可能详细介绍了Apriori算法和FP-Growth算法,这些都是发现关联规则的经典方法。
聚类规则则是将数据集划分为具有相似特征的组,比如K-means、DBSCAN等聚类算法。第10章(聚类规则).doc可能会探讨如何选择合适的距离度量和聚类算法,以及如何解释和利用聚类结果。
数据仓库(Data Warehouse)是一个集中的、结构化的数据存储,用于支持业务决策。它与操作型数据库不同,强调历史数据的保留、数据清洗和数据分析。DW AND DM第1~4章.ppt可能涵盖了数据仓库的设计、构建过程,包括ETL(提取、转换、加载)、星型模式和雪花模式的多维数据模型等内容。
此外,《数据仓库与数据挖掘》第11~12章(时序和序列;WEB挖掘)1.doc将深入时序分析和Web挖掘。时序分析处理的是随时间变化的数据,常用于股票市场预测、用户行为分析等。Web挖掘则涉及从网页和网络日志中提取有价值的信息,包括结构化、半结构化和非结构化数据的处理。
通过本教程,初学者可以系统地了解数据挖掘和数据仓库的基本概念、方法和工具,为进一步的深入学习和实践打下坚实基础。
数据挖掘
0
2024-11-04
数据仓库建设与实施指南
数据仓库的建设需要业务人员和信息部门人员共同组建项目小组,共同开发数据仓库。业务人员负责明确决策主题,信息部门人员负责数据抽取。双方需要相互沟通协作。
Hive
8
2024-05-12
数据仓库与数据挖掘实验指南
运用 Access 软件的多项功能,辅助数据仓库与数据挖掘实验教学。
Access
3
2024-05-28
ETL设计与数据仓库及数据挖掘的应用
设计具有可扩展性、通用性、用户友好操作界面和统一元数据管理的数据ETL系统,并在石化企业中应用。
数据挖掘
5
2024-04-29
数据仓库原理及应用
仓库管理通过外购工具或自定义程序实现数据仓库管理,自动化程度决定了程序复杂性。
数据挖掘
3
2024-05-14