Apache Flink是一款先进的开源流处理框架,专为实时和批量数据流处理而设计。其核心特性包括高吞吐量、低延迟以及高可靠性的数据处理服务,支持事件时间处理和“精确一次”的状态一致性。Flink同时支持批处理和流处理任务,具备灵活的窗口操作和状态管理功能,广泛应用于实时数据分析、复杂事件处理、数据管道和ETL等场景。部署Flink集群需要环境准备、下载和解压Flink、配置Flink等多个步骤,确保集群稳定运行。
Apache Flink简介与部署步骤详解
相关推荐
Apache Flink 1.16简介.pdf
Apache Flink 1.16是一个重要的大数据处理框架的版本更新,主要集中在批处理、流处理、稳定性、性能和易用性的改进上。在这个版本中,Flink提供了更多的特性和优化,使得它在大数据领域中的应用更加广泛和可靠。Flink 1.16强化了批处理的能力。它引入了SQL Gateway,实现了协议插件化,支持了多租户,并且与Hive生态高度兼容。通过Hive Server2 Protocol,Flink可以更好地与Hive集成,Hive查询的兼容性达到了94%。此外,Flink 1.16还引入了Adaptive Batch Scheduler,能够自动设置并发度以适应不同的工作负载。同时,它支持Speculative Execution来减少长尾任务的影响,以及Hybrid Shuffle来提高数据传输效率。另外,动态分区修剪(Dynamic Partition Pruning)和Adaptive Hash Join的引入进一步优化了批处理的性能和稳定性。在流处理方面,Flink 1.16实现了Changelog State Backend的生产可用,这是一个重要的里程碑,因为它确保了在故障恢复时能快速回放更少的数据,从而加快Failover的速度。RocksDB State Backend也得到了显著优化,其ScaleUp速度提升了2-10倍,提供了更丰富的Metrics以便于运维。此外,Flink 1.16还引入了缓冲区透支支持,以加速Unaligned Checkpoint的完成。在易用性上,Flink 1.16对TaskManager的Slot进行了改进,使其更加灵活。PyFlink作为Python API,覆盖度达到了95%以上,新增了对window、side output、broadcast state的支持,并全面支持所有内置Connector & Format,包括对ES、Kinesis、Pulsar、Orc和Parquet的完整支持。PyFlink的性能也得到了显著提升,尤其是在处理JSON计算的典型场景下,性能基本追平了JAVA。在功能和性能方面,Flink 1.16针对维表操作进行了增强,引入了通用缓存机制、异步模式和重试机制,以提升查询速度和吞吐量。同时,它开始支持检测并消除流SQL中的非确定性问题,确保流计算的确定性。
flink
2
2024-07-12
精通Apache Flink,学习Apache Flink
根据所提供的文档内容,可以了解以下信息:1. Apache Flink简介:Apache Flink是一个开源的流处理框架,支持高吞吐量、低延迟的数据处理,具备容错机制,确保数据处理的准确性。Flink的架构包括Job Manager负责任务调度和协调,Task Manager执行任务。它支持状态管理和检查点机制,实现“恰好一次”状态计算。此外,Flink提供了窗口操作来处理滑动、滚动和会话窗口,以及灵活的内存管理。Flink还包含优化器,同时支持流处理和批处理。2. 快速入门设置:了解Flink的安装和配置步骤,包括在Windows和Linux系统上的安装,配置SSH、Java和Flink,以及启动守护进程和添加额外的Job/Task Manager。还需了解如何停止守护进程和集群,以及如何运行示例应用。3. 使用DataStream API进行数据处理:定义数据源,进行数据转换操作和应用窗口函数,支持物理分区策略,处理事件时间、处理时间和摄入时间。4. 使用批处理API进行数据处理:针对有限数据集,支持文件、集合、通用数据源及压缩文件,包括Map、Flat Map、Filter、Project等转换操作,以及归约操作和分组归约操作。5. 连接器:连接Apache Flink与其他系统,包括Kafka、Twitter、RabbitMQ和E。
flink
0
2024-08-21
Apache Flink Connector开发详解
Apache Flink是一款流处理框架,专为实时数据处理和分析设计。它保证低延迟、高吞吐量和精确一次的状态一致性。Flink的关键特性包括流处理、批处理(作为特殊流处理情况)和事件时间处理。Connectors是Flink连接外部系统的关键组件,如数据库、消息队列或文件系统,用于数据的输入和输出。Flink Connector开发涉及Connector概述、Source Connector、Sink Connector、Stateful Processing、Event Time & Watermarks以及Exactly-once Semantics等方面。开发者可通过实现Flink提供的接口自定义数据源和数据接收器,以适应不同系统的需求。
flink
0
2024-08-23
Apache Kyuubi简介与特性详解
Apache Kyuubi是一个高性能的分布式SQL-on-Hadoop服务框架,通过JDBC/ODBC接口提供便捷的大数据存储访问和操作,支持多种处理引擎如Spark SQL、Flink等。其设计以高效、安全和多租户环境支持为特点,适用于各类数据分析需求。Kyuubi还支持多种安全机制和与Hive的兼容性,通过优化的会话管理和资源隔离实现了出色的并发处理。
统计分析
0
2024-09-13
Apache Flink 1.13.0在Linux环境下的部署教程
在Linux环境中,Apache Flink是一款广受欢迎的开源大数据处理框架,提供高效的流处理和批处理能力。Flink 1.13.0版本作为稳定发布版,集成多项改进和新特性。本教程将详细介绍如何在Linux系统上配置并部署Flink到YARN集群模式,以有效管理资源和任务调度。为确保顺利部署,确保安装Java 8或更高版本,并配置完整的Hadoop集群,包括YARN作为资源管理器。解压下载的linux_flink-1.13.0.rar文件后,你将获得flink-1.13.0目录,包含所有必要的可执行文件和配置。在配置conf/flink-conf.yaml文件时,设置关键参数如jobmanager.rpc.address、jobmanager.heap.memory、taskmanager.heap.memory、yarn.application.classpath、yarn.container-memory和yarn.taskmanager.memory.process,确保正确启动YARN会话。
flink
2
2024-07-22
Apache Flink 1.7 中文文档详解
Apache Flink中文文档详细介绍了快速上手和开发流式计算的权威资料,是学习和使用Flink的必备参考。
flink
0
2024-08-09
Apache Flink 1.13.6 CDC资源包详解
“flink-1.13.6_cdc”指的是Apache Flink的1.13.6版本,专为Change Data Capture (CDC)设计。Apache Flink是一款流行的开源流处理框架,支持实时数据流处理。CDC技术用于捕获数据库中的变更事件,并将其传输到其他系统进行处理或存储。该资源包包含了部署Flink CDC环境所需的所有组件和配置,如Flink运行时、相关连接器及配置文件。子文件包括Flink MySQL CDC连接器的JAR文件(版本2.0.1)和Flink SQL Elasticsearch 7连接器的JAR文件。此外,还包含了Flink 1.13.6的二进制发行版,用于在本地或集群上部署和运行Flink作业。整体而言,这个资源包支持用户实时捕获MySQL数据库变更事件,并通过Flink进行处理,最终将结果实时写入Elasticsearch,以提供实时的索引和搜索能力。
flink
0
2024-09-20
mysql安装部署步骤详解
在进行mysql的安装过程中,需要按照以下步骤操作:首先,下载适合系统的mysql安装包;其次,解压安装包并配置环境变量;接着,运行安装程序并按照提示进行数据库设置;最后,启动mysql服务并进行连接测试。这些步骤将确保mysql在您的系统上顺利安装和部署。
MySQL
2
2024-07-31
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。
Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
flink
5
2024-05-12