多维模型的事实度量在时间维属性上发挥重要作用。
数据仓库与数据挖掘的多维模型综述
相关推荐
多维数据模型数据仓库与数据挖掘综述
多维数据模型的事实度量(Metrics)涉及时间维的属性。
数据挖掘
3
2024-07-16
数据仓库与数据挖掘研究综述
技术路线和实现方法
数据挖掘应用服务器管理平台
行业应用
阶段一- 模型创建可视化- 服务器调度和监听- 数据抽取工具研制- 用户界面友好
阶段二- 模型显示可视化- 模型组件的应用- 特定行业应用- 组件二次开发应用- 人机接口友好
数据仓库建模数据挖掘算法实现服务器框架构建
数据挖掘
5
2024-05-13
数据挖掘应用概述-数据仓库与数据挖掘综述
数据挖掘应用比例、Data Mining Upsides、Data Mining Downsides、Data Mining Use、Data Mining Industry and Application、Data Mining Costs
数据挖掘
2
2024-07-12
数据仓库与数据挖掘的广泛应用综述
数据仓库与数据挖掘在各个领域的应用比例如下:聚类分析占22%,直销市场占14%,交叉销售模型占12%。详细信息可参考www.kdnuggets.com 2001/6/11 新闻。
数据挖掘
0
2024-08-28
数据挖掘与标准化的革新——数据仓库与挖掘综述
数据挖掘与标准化进程采用CRISP-DM标准(跨行业数据挖掘标准过程),结合XML和数据预处理,整合了SOAP(简单对象访问协议)、数据库与系统互操作的标准,同时支持PMML(预测模型标记语言)和OLE DB For Data Mining。这些技术构建了基于API接口的数据挖掘系统。
数据挖掘
1
2024-07-16
数据仓库与数据挖掘综述 - 数据存储体系及其要素
随着数据挖掘和数据仓库技术的迅速发展,数据仓库体系结构及其组成要素正逐步成为信息科技领域的关键话题。数据仓库体系结构包括ETL工具、元数据库及其管理、以及数据访问与分析工具。
数据挖掘
2
2024-07-26
数据仓库与数据挖掘
数据仓库将数据转化为可供分析的信息,而数据挖掘从这些数据中提取模式和趋势,两者结合可为决策提供支持。
数据挖掘
4
2024-05-13
数据仓库模型设计及数据挖掘应用
数据仓库模型的设计
在设计数据仓库模型时,需要考虑到可用的数据。例如,为了完成客户发展、收益分析和呼叫特性分析这三个主题,以下三部分信息是必要的:
客户的基本信息表
客户的账单信息表
客户的呼叫信息表
2.1 数据仓库设计
数据挖掘
0
2024-10-31
数据仓库与数据挖掘技术
这是一份关于数据仓库和数据挖掘技术的文档,希望对您有所帮助。
数据挖掘
2
2024-05-15