多维数据模型的事实度量(Metrics)涉及时间维的属性。
多维数据模型数据仓库与数据挖掘综述
相关推荐
数据仓库与数据挖掘的多维模型综述
多维模型的事实度量在时间维属性上发挥重要作用。
数据挖掘
0
2024-08-12
数据仓库与数据挖掘研究综述
技术路线和实现方法
数据挖掘应用服务器管理平台
行业应用
阶段一- 模型创建可视化- 服务器调度和监听- 数据抽取工具研制- 用户界面友好
阶段二- 模型显示可视化- 模型组件的应用- 特定行业应用- 组件二次开发应用- 人机接口友好
数据仓库建模数据挖掘算法实现服务器框架构建
数据挖掘
5
2024-05-13
数据挖掘应用概述-数据仓库与数据挖掘综述
数据挖掘应用比例、Data Mining Upsides、Data Mining Downsides、Data Mining Use、Data Mining Industry and Application、Data Mining Costs
数据挖掘
2
2024-07-12
逻辑数据模型:数据仓库的基石
逻辑数据模型:数据仓库的核心
逻辑数据模型在数据仓库中扮演着关键角色,它连接着源数据和最终用于分析的应用数据模型。它负责:
存储和管理数据: 定义数据结构、组织和存储采集的数据,为后续分析奠定基础。
回答业务问题: 通过逻辑模型,可以将业务问题转化为数据查询,从而提取有价值的信息。
数据清洗和转换: 定义数据清洗和转换规则,确保数据质量和一致性。
支持多种应用: 为数据集市、商业智能 (BI) 工具和数据挖掘等应用提供数据基础。
建模方法论:
构建逻辑数据模型通常采用以下方法:
实体关系 (ER) 建模: 识别数据实体及其关系,构建实体关系图 (ERD)。
维度建模: 定义事实表和维度表,适用于分析型应用。
逻辑数据模型的价值:
数据理解和沟通: 提供清晰的数据视图,方便业务人员和技术人员理解数据。
数据质量保证: 通过定义数据规则,确保数据的一致性和准确性。
应用开发效率: 简化数据访问,提高应用开发效率。
逻辑数据模型是数据仓库建设的基石,它为数据整合、分析和应用提供了一个坚实的基础。
Hadoop
2
2024-04-29
数据仓库与数据挖掘的广泛应用综述
数据仓库与数据挖掘在各个领域的应用比例如下:聚类分析占22%,直销市场占14%,交叉销售模型占12%。详细信息可参考www.kdnuggets.com 2001/6/11 新闻。
数据挖掘
0
2024-08-28
数据仓库与数据挖掘综述 - 数据存储体系及其要素
随着数据挖掘和数据仓库技术的迅速发展,数据仓库体系结构及其组成要素正逐步成为信息科技领域的关键话题。数据仓库体系结构包括ETL工具、元数据库及其管理、以及数据访问与分析工具。
数据挖掘
2
2024-07-26
数据挖掘与标准化的革新——数据仓库与挖掘综述
数据挖掘与标准化进程采用CRISP-DM标准(跨行业数据挖掘标准过程),结合XML和数据预处理,整合了SOAP(简单对象访问协议)、数据库与系统互操作的标准,同时支持PMML(预测模型标记语言)和OLE DB For Data Mining。这些技术构建了基于API接口的数据挖掘系统。
数据挖掘
1
2024-07-16
数据仓库与数据挖掘
数据仓库将数据转化为可供分析的信息,而数据挖掘从这些数据中提取模式和趋势,两者结合可为决策提供支持。
数据挖掘
4
2024-05-13
数据仓库中的元数据模型介绍及应用
元数据模型是关于现有操作型业务系统数据源的描述信息,包括物理数据结构、数据项的业务定义与更新频率、数据项的有效值以及其他具有相同业务含义的数据项清单。数据仓库的多维模型标准包括星型模型和雪花维模型,前者由维和事实表构成,后者由相互关联的多个维表组成,通过减少数据存储量增加模型的灵活性,但查询复杂化。时间维用来描述事实数据的时间属性,包括Year、Quarter、Month、Day、Hour、Minute、Second等层次。
Oracle
1
2024-08-03