目前,预测人脸图像中的情绪是一个活跃的研究领域,提出了一种系统,通过多阶段实现情绪预测。首先,系统进行预处理,检测并调整人脸图像大小,并应用直方图均衡化以归一化照明效果。接下来,利用定向梯度直方图(HOG)和局部二值模式(LBP)提取面部表情图像的特征,构建训练数据集和包含多种表情的测试数据集。最后,采用K-最近邻(KNN)算法进行情感分类,评估其性能通过混淆矩阵技术。所提出的系统在多个数据库上进行了测试,表现出优异的预测能力。
基于面部图像的情感估计系统HOG和KNN算法的应用
相关推荐
基于3D面部数据及AI算法的情感数据采集分析与心理预警系统
传统心理数据采集与分析系统存在数据采集困难、操作性差且预警时效性差的问题。提出了基于3D面部数据及人工智能算法的情感数据采集分析与心理预警系统。该系统利用Kinect V2体感设备采集三维面部数据,利用数据挖掘方法提取面部表情特征,再通过人工智能算法进行特征识别分类。系统根据表情与心理变化的相关性判断被检测对象的心理状态变化,实现了便捷、准确的情感数据采集与心理预警。
数据挖掘
1
2024-07-16
基于KNN算法的数据集分析
随着数据科学技术的进步,KNN算法在数据集分析中展示出强大的应用潜力。该算法通过比较数据点之间的距离来识别相似模式,为数据分析提供了有效工具。研究人员可以利用这一算法快速识别数据集中的关键特征和趋势。
数据挖掘
1
2024-07-15
KNN算法的机器学习应用总结ppt
KNN算法是机器学习领域中的一种经典算法,它通过测量不同特征值之间的距离进行分类。该算法简单有效,适用于各种数据集类型,特别是在数据样本较少的情况下表现突出。通过选择适当的邻居数量(K值),KNN算法能够提供高准确度的分类和预测。
算法与数据结构
2
2024-07-16
基于Retinex和暗通道算法的图像去雾系统
这款图像去雾系统采用了Retinex和暗通道算法,使用MATLAB实现。主要功能包括全局直方图均衡化方法去除有雾图像、Retinex算法以及暗通道算法。此外,系统还能对无雾图像添加雾,然后应用这三种算法进行去雾处理,并比较处理前后的直方图差异。
Matlab
2
2024-07-19
SAofReddit 数据挖掘和情感分析的应用
在本项目“SAofReddit”中,我们将探讨如何利用数据挖掘技术和情感分析来分析Reddit平台上特定子版块的热门话题。Reddit作为全球知名的社交新闻网站,用户生成的内容丰富多样,提供了丰富的研究素材。通过Python编程语言,我们将构建一个强大的工具集来收集、分析和可视化这些数据。数据挖掘是该项目的核心,我们将使用Python的爬虫库如BeautifulSoup或Scrapy来抓取Reddit上的帖子标题、内容、作者信息及评论。同时考虑API限制,可能需要使用PRAW库更有效地与Reddit API交互。情感分析是理解用户情绪的关键步骤,使用NLTK或spaCy库进行文本预处理和情感分析工具如TextBlob或VADER来评估帖子和评论的情感倾向。Python的Matplotlib和Seaborn库用来创建各种图表展示帖子的热度趋势、情感分布和用户活动模式,Plotly和Bokeh生成交互式图形。为了存储和管理大量数据,我们将使用数据库如SQLite或MongoDB,Python的sqlite3和PyMongo库用于数据操作。敏捷开发方法和Git版本管理确保项目的效率和可重复性,Jupyter Notebook或Google Colaboratory提供交互式环境展示代码和结果。
数据挖掘
2
2024-08-01
基于类别特性的 KNN 文本分类算法改进
论文提出了一种基于独立类别特性的改进 KNN 文本分类算法,该算法通过利用文本的不同类别特征来提高分类精度。
数据挖掘
4
2024-04-30
展示kNN算法在Python中的实际应用示例
邻近算法,或称K最近邻(kNN,k-NearestNeighbor)分类算法,是数据挖掘分类技术中最简单的方法之一。其核心思想是根据样本在特征空间中的k个最接近的邻居来进行分类。如果待分类样本在特征空间中的k个最相邻样本中的大多数属于某一类别,则该样本也属于该类别,并具有该类别样本的特性。该方法仅依赖少量邻近样本来做出分类决策,适用于处理类域交叉或重叠较多的情况。在Python中,使用scikit-learn库可以轻松实现kNN算法。首先,进行数据预处理,包括清洗、缺失值处理和特征缩放。然后,将数据集划分为训练集和测试集。接下来,使用KNeighborsClassifier类创建kNN分类器对象,并设置k值。训练模型后,可以对新样本进行分类预测。最后,通过评估指标如准确率、精确率和召回率来评估模型性能。
数据挖掘
3
2024-07-26
通过面部图像分析预测年龄和性别的方法——基于MATLAB开发
利用面部图像分析技术,开发了一种预测年龄和性别的方法。这项技术基于MATLAB平台,通过对面部特征的识别和分析,准确地预测出个体的年龄和性别信息。
Matlab
2
2024-07-26
基于MATLAB的面部识别技术
这份资源包含了使用MATLAB编写的有效人脸识别程序。
Matlab
0
2024-08-29