决策离不开知识,从数据库中采掘知识,是解决从大信息量中获取有用知识的有效途径。然而,实际数据库的复杂性,如信息量的增加和噪声等,对数据挖掘方法提出了比机器学习更高的要求。当前,神经网络、决策树、粗集和云模型等数据挖掘方法的研究正在受到广泛关注。尽管这些方法各有局限,但它们的组合具有互补性,未来数据挖掘的发展趋势将是多方法融合。综上所述,数据挖掘方法面临着多方面的挑战。
评述数据挖掘方法的研究现状及其挑战
相关推荐
手势识别研究现状及挑战
基于单目相机的静态手势识别技术得到了广泛关注,其主要应用领域包括人机协同、手语理解和智能控制。近年来,机器学习和深度学习技术在手势识别领域取得了显著进展,提高了识别精度和实时性。
基于单目相机的静态手势识别存在以下挑战:- 分割困难:复杂背景、光照条件和手势的非刚性使得从图像中分割出手势区域具有难度。- 特征提取:设计能够有效描述手势特征的特征是至关重要的。- 分类方法:选择合适的分类方法对识别性能有重要影响。
解决这些挑战需要进一步的研究和创新,以提高手势识别的鲁棒性、准确性和实时性。
算法与数据结构
4
2024-05-25
国内数据挖掘研究现状及应用分析
国内在数据挖掘领域的研究相对于国外稍晚起步,但目前发展迅速。1993年,国家自然科学基金首次资助复旦大学进行相关研究项目,自此以后,国内许多科研单位和高等院校纷纷投入到基础理论及应用研究中。
数据挖掘
2
2024-07-17
数据挖掘研究现状
数据挖掘研究现状
数据挖掘领域近年来发展迅速,新的算法和应用不断涌现。当前研究热点主要集中在以下几个方向:
深度学习: 深度学习技术在图像识别、自然语言处理等领域取得了突破性进展,也被引入数据挖掘领域,用于处理复杂数据、提升预测精度。
大规模数据挖掘: 随着数据规模的爆炸式增长,如何高效地处理和分析海量数据成为一大挑战。分布式计算、云计算等技术被应用于大规模数据挖掘,以提高效率和可扩展性。
数据隐私和安全: 数据挖掘在带来便利的同时,也引发了隐私和安全问题。差分隐私、联邦学习等技术被用于保护数据隐私,保障数据安全。
跨领域数据融合: 不同领域的数据融合可以提供更全面的信息,有助于更深入的分析和洞察。跨领域数据融合需要解决数据异构、数据质量等问题。
可解释性: 许多数据挖掘算法缺乏可解释性,难以理解其工作原理和结果。研究人员致力于开发更具解释性的算法,提高模型的透明度和可信度。
数据挖掘技术正在不断发展和完善,未来将在更多领域发挥重要作用。
算法与数据结构
2
2024-05-21
我国煤矿安全生产现状及改进对策研究
通过对我国煤矿“十一五”期间的事故数据进行统计分析发现,煤矿安全生产状况显著改善,事故死亡人数和事故起数总体呈现明显下降趋势;煤矿百万吨死亡率也显著减少。2006年至2010年间,煤矿百万吨死亡率下降了63.3%。尽管瓦斯事故死亡人数和事故起数有所减少,但其在总体比例中仍稳定,仍是主要的事故类型之一。根据事故发生原因,提出了具体的预防对策。
统计分析
0
2024-08-31
国内外研究现状Linux内存取证及其方法
1.2 国内外研究现状
1.2.1 Linux内存取证研究现状在对计算机系统进行取证调查时,具备获取和分析物理内存(RAM)数据的能力是至关重要的。因为,物理内存中不仅保存有最近运行程序、打开文件以及访问网络等操作所留下的痕迹信息,并且还能检索到一些只在内存中出现且未曾保存到硬盘上的数据信息,例如恶意代码入侵的痕迹信息以及磁盘加密文件的解密密钥等易失性数据信息。与此类似的是,在进行Android手机取证调查时,同样需要具备获取和分析物理内存(也称作运行内存)数据的能力。由于Android系统是基于Linux内核开发的,因此可以把Linux内存取证的研究思路和方法借鉴到Android物理内存取证的研究工作中。
Linux内存的获取方法获取Linux内存镜像传统的方法是在dev/mem目录下使用dd命令获取物理内存的映射文件,但只可以获取到物理内存前896MB的数据。如果物理内存的大小超过896MB,则无法获取完整的内存数据。随着Linux内核安全机制的增强,从内核版本Linux 2.6开始这种方法便在所有的Linux系统发行版中被禁止了。为了获取物理内存中完整的内容,J. Sylve和A. Case[3]开发了可导入内核模块LiME(以前被称为DMD)[4],取证调查人员把该内核模块加载到系统内核就可以获取到Linux和Android系统的完整内存(RAM)镜像。这虽然被公认为目前最好的方法,但是加载...
SQLite
0
2024-10-30
数据挖掘软件现状
截止2002年9月,亚马逊网站上关于数据挖掘的书籍已达251本。
与此同时,数据挖掘软件产品数量也已达到数百个,其应用范围正在不断扩大。
数据挖掘
4
2024-05-20
国内数据挖掘软件现状
国内数据挖掘软件现状
当前,国内数据挖掘软件发展现状可概括为:
科研为主导: 大部分软件仍处于科研阶段,主要由高校和科研机构进行算法研究。
文献资源有限: 国内数据挖掘领域著作较少,主要依赖翻译国外书籍。
专业社区活跃: 数据挖掘讨论组 (www.dmgroup.org.cn) 为专业人士提供交流平台。
应用领域拓展: 部分公司基于国外成熟产品进行二次开发,推出特定应用解决方案。
国外产品占优势: 市场上的主流数据挖掘软件仍以 IBM Intelligent Miner、SAS Enterprise Miner 等国外产品为主。
自主研发崭露头角: 以复旦德门 (www.datamining.com.cn) 为代表的国内企业,正积极开发拥有自主知识产权的数据挖掘软件。
国内数据挖掘软件发展面临挑战
核心技术突破: 需加强原创性算法研究,打破国外技术垄断。
人才队伍建设: 培养兼具理论基础和实践经验的专业人才。
应用生态构建: 推动数据挖掘技术与各行业深度融合,拓展应用场景。
未来展望
随着国家对数据产业的重视和投入,以及企业数字化转型的加速,国内数据挖掘软件行业发展前景广阔。
数据挖掘
4
2024-05-23
分布式数据库系统的现状及实际应用探讨
分布式数据库系统是现代科技领域中一项重要的技术创新,其在数据存储和处理方面具有显著优势。中科院徐俊刚老师的课件详细介绍了其在各个领域的应用实例,为学术界和工业界提供了宝贵的经验与参考。
Oracle
0
2024-10-01
数据挖掘语言现状与应用
数据挖掘语言包含数据挖掘查询语言、建模语言和通用语言,支持临时、交互式数据挖掘,便于知识发现。每种语言各有特点:
数据挖掘查询语言:侧重于查询和检索
数据挖掘建模语言:专注于构建模型
通用数据挖掘语言:融合多种功能,涵盖数据预处理、建模、可视化等
数据挖掘
4
2024-05-26