MATLAB精确性检验代码服务器提供了随机优化的鲁棒元算法的MATLAB实现。项目运行前需要安装以下软件包:文件过滤(filters目录)。主要包括不同方法的过滤点:baselineGradient.m,用于删除具有最大梯度的点;baselineLosses.m,删除损失最大点的基线;baselineOracleL2.m,除去具有最大L2范数的点。filterSimple.m是我们的方法,它将渐变投影到顶部的主成分上,并根据其结果大小去除点。SVM部分(svm目录)包括我们的SVM评估的代码和数据,分为Enron数据集和综合数据集两个文件夹。攻击集合保存在diaries目录下,每个数据集根据损坏分数和生成攻击的方法进行拆分。testSingleAttack.m、testSingleSuite.m和t
MATLAB精确性检验代码服务器随机优化的鲁棒元算法实现
相关推荐
Matlab实现精确性检验代码-SymNet
这是我们对SPD矩阵非线性学习提出的轻量级联SPD歧管深度学习网络的Matlab实现。如果您发现这篇文章对您的研究有帮助,请引用以下内容:R. Wang, X.-J. Wu, 和 J. Kittler的“SymNet: A Simple Symmetric Positive Definite Manifold Deep Learning Method for Image Set Classification”,发表于2020年IEEE Transactions on Neural Networks and Learning Systems。SymNet-v1文件夹包含三个.m文件:(1) deepmain.m是主文件,实现了SymNet-v1的结构;(2) computeCov.m用于计算训练和测试图像集的SPD矩阵。
Matlab
0
2024-08-17
鲁棒卡尔曼滤波包优化MATLAB实现的鲁棒卡尔曼滤波器系列
该软件包提供了一系列鲁棒卡尔曼滤波器的优化实现。每个滤波器均使用固定参数tau(取值介于0和1之间)进行选择,通过容差参数c来调整滤波器的鲁棒性。设计保证在模型扰动下,真实模型落在一个名义球内,其中模型间的Tau散度小于宽容度C。此外,软件包还包含了实际应用示例演示。参考文献:M.佐尔齐,“模型扰动下的鲁棒卡尔曼滤波”;M.佐尔齐,“关于模型不确定性下贝叶斯和维纳估计量的鲁棒性”。
Matlab
3
2024-07-26
MATLAB精确性检验代码-基于完全正向和保留迹象的CPTP投影
该存储库包含MATLAB函数和脚本,用于通过完全正向且保留迹象的投影,在量子过程层析成像中生成图像。某些基准测试求解器通过调用实现。为了运行这些代码,需在父目录中安装CVX。此代码已通过MATLAB R2017a和CVX v2.1的测试。具体包括图1c的fig1c.m、ROBUSTNESS_investigation.m、LI_typical_distance_to_CP.m和how_often_cvx_fails.m,以及使用do_paper_plots.m生成的图2、5、8。
Matlab
2
2024-07-27
压缩分类器基于随机投影实现MATLAB开发的鲁棒降维分类器
SC - 稀疏分类器,FSC - 快速稀疏分类器,GSC - 群稀疏分类器,FGSC - 快速群稀疏分类器,NSC - 最近子空间分类器,使用SPGL1 - [链接] 进行稀疏化,使用GroupSparseBox - [链接],更多详情请参阅 [链接]。
Matlab
2
2024-07-22
matlab源代码-RCMSA鲁棒几何拟合随机聚类模型
该matlab开源源码实现了鲁棒几何拟合的随机聚类模型。该模型由TT Pham、T.-J. Chin、J. Yu 和 D. Suter 提出,通过随机聚类进行几何模型的稳健拟合。相关论文包括:
IEEE CVPR会议论文,普罗维登斯,罗德岛,美国,2012年,标题:Random Cluster Model for Geometric Fitting。
IEEE TPAMI期刊文章,2014年,标题:The Random Cluster Model for Robust Geometric Fitting。
其他相关文献:TT Pham, T.-J. Chin, K. Schindler, 和 D. Suter提出的交互几何先验和自适应可逆跳跃MCMC多结构拟合方法,发布于NIPS 2011。
此开源包为几何拟合领域的研究者提供了一个强大的工具,能够有效解决多模型拟合的鲁棒性问题。
Matlab
0
2024-11-05
数据挖掘的鲁棒性方法
数据挖掘的鲁棒性方法
概述
在实际应用中,数据往往包含噪声、异常值和不完整信息。鲁棒数据挖掘致力于开发能够在这些挑战下仍然表现良好的算法和技术。
关键挑战
噪声和异常值: 噪声会扭曲数据模式,而异常值可能导致错误的结论。
不完整数据: 缺失值会降低数据质量,影响分析结果。
数据分布的变化: 数据分布随时间或环境变化可能导致模型性能下降。
鲁棒数据挖掘技术
数据预处理: 检测和处理噪声、异常值和缺失值的技术,例如数据清洗和数据插补。
鲁棒统计方法: 使用统计方法来减少异常值的影响,例如中位数和四分位数。
集成学习: 结合多个模型的结果来提高整体鲁棒性。
异常检测: 识别数据中的异常值,并采取适当的措施。
应用
鲁棒数据挖掘在各种领域有广泛的应用,包括:
金融欺诈检测: 识别信用卡交易中的异常模式。
网络入侵检测: 检测计算机网络中的可疑活动。
医疗诊断: 识别医学图像中的异常情况。
推荐系统: 提供可靠的个性化推荐,即使数据存在噪声。
结论
鲁棒数据挖掘对于从现实世界数据中提取有价值的见解至关重要。通过采用适当的技术,我们可以提高数据挖掘模型在面对数据质量挑战时的可靠性和准确性。
数据挖掘
8
2024-04-30
MLforSHM结构健康监测中的机器学习算法精确性验证Matlab代码
Matlab精确度检验代码对于结构健康监测至关重要。这些代码通过精确的数据分析和模型验证,确保监测结果的可靠性和准确性。
Matlab
3
2024-07-28
三种随机攻击策略下网络鲁棒性指标分析
三种随机攻击策略下网络鲁棒性指标分析
本研究探讨了三种随机攻击策略对网络鲁棒性的影响,重点关注最大连通分量、效率和集聚系数三个指标的变化情况。通过模拟不同攻击策略,分析网络在遭受随机攻击时的结构变化,进而评估网络的抗攻击能力。
数据挖掘
7
2024-05-21
电机能耗测试精确性的挑战
传统的电机能耗测试方法在变频调速时代面临挑战。如何准确评估变频电机的能耗和效率成为亟待解决的问题。
统计分析
4
2024-04-30