这是使用成分损失进行除雾的Matlab双线性网络代码。训练数据准备方面,我们采用了NYU2数据集。您可以从官网下载这些数据集。使用'generate_hazy_img_noise.m'生成模糊的有噪声图像,使用'generate_hazy_img_nyu.m'生成模糊但无噪声的图像。接下来,使用'generate_train.m'来准备训练数据。请注意,文件夹“文件夹”,模糊图像和深度图分别用于地面真实清晰图像,模糊图像和深度图。请将它们替换为您自己的路径。训练过程使用'train.m'开始。损失函数使用了'vl_nnhazerobustloss.m',这是L2范数损失函数的一种。在无噪声训练方面,使用了'vl_nnhazesquareloss_non_noise.m'。最后,使用'demo_test.m'进行测试,查看经过训练模型的去雾和去噪效果。