使用Tensorflow框架构建了一个神经网络模型,识别手写数字。
利用Tensorflow实现神经网络模型识别手写数字
相关推荐
TensorFlow 构建 AlexNet 手写数字识别模型
利用 TensorFlow 框架构建 AlexNet 模型,用于识别手写数字,代码实现参考 Kaggle 平台上的开源项目。
算法与数据结构
9
2024-05-21
基于人工神经网络的手写数字识别
该项目利用人工神经网络技术,构建了一个MATLAB手写数字识别系统,实现了对手写数字的自动识别。
Matlab
14
2024-05-25
Matlab BP神经网络连续手写数字识别(含GUI)
Matlab 的 BP 神经网络做手写数字识别,效果还挺稳的。这个项目有完整源码,连 GUI 都配好了,直接跑起来没啥门槛。适合刚接触神经网络的同学练手,也适合老手快速搭建 demo 看看效果。训练识别 0~9 的数字,连续手写都能跟上,响应也挺快,界面还行不难看,操作也直观。训练部分用的是BP 神经网络,前向传播+反向传播那套流程,逻辑清晰,代码注释也比较全,适合你对着改着学。你要是对Matlab 神经网络工具箱不熟,也没关系,这里面用到的函数都不多,像train、sim这些基础函数就够用了。GUI 那块做得还蛮实用的,不是纯展示,能手动输入、识别、清空,适合做个小演示或者当作课程设计交差。
Sybase
0
2025-07-01
基于神经网络的数字识别MATLAB实现
基于神经网络的数字识别项目,挺适合刚接触机器学习的你上手练练手。整个流程从用MNIST数据集搞训练,到用MATLAB搭个MLP模型,思路还蛮清晰的。尤其是训练阶段的反向传播部分,讲得比较细,代码实现也不复杂,跑起来还挺顺畅。
数字识别的例子其实比较经典,多教程也都绕不开它。这个项目的好处是,不光有MATLAB的实现思路,还有评估方法、优化技巧都提了一嘴。像什么dropout、CNN、模型集成这些,想继续深挖的朋友也能找到切入口。
而且如果你之前对神经网络理解不深,文里用大白话讲了不少,比如神经元是怎么传递信息的,激活函数是干嘛的,挺接地气。基本不用担心看不懂,按着流程来一遍,搞懂数字识别不难。
Matlab
0
2025-06-16
改进后的BP神经网络模型
主要借鉴了Matlab程序,对BP神经网络模型进行了改进和优化。
Matlab
15
2024-08-23
BP神经网络改善手写数字识别问题matlab源代码
希望这份matlab源代码能为您提供实质性帮助!BP神经网络在改进手写数字识别方面具有显著效果。
Matlab
12
2024-08-30
基于MATLAB与BP神经网络的手写数字识别系统
该系统运用BP神经网络技术, 通过Matlab平台实现手写数字的识别功能。用户可在交互界面上传测试图片,系统将自动进行图像预处理、读取隐含层信息等操作,最终输出识别结果。
Matlab
14
2024-05-28
手写数字神经网络数据挖掘研究
手写数字的数据挖掘的完整项目,真的蛮香的!压缩包里有详细的文档,几十页,看起来不累,逻辑还清晰。更好的是,代码都写好了,分成两块:数据提取和数据挖掘,用的是 VC,虽然老点,但跑起来没问题。原始数据也一起打包了,调试后能直接生成完整的软件,拿来练手或者当毕设材料都挺合适的。
数据挖掘
0
2025-06-13
RBF、GRNN和PNN神经网络模型MATLAB实现代码
RBF、GRNN 和 PNN 神经网络模型的实现代码挺适合初学者的,是如果你正打算在机器学习或人工智能项目中用到它们。这个压缩包里有三种常见的神经网络模型,都是用 MATLAB 实现的,代码结构清晰,注释详细。RBF 网络能你分类和回归问题,GRNN 适合快速学习并且无需多次训练,PNN 适用于多分类任务,虽然数据集大的时候会有些慢,但其实也挺好用的。MATLAB 中的实现让你对这些模型的工作原理有更清晰的理解,且操作起来比较简单。整体来说,如果你是学习机器学习、神经网络的初学者,或者想在实际项目中应用这些模型,这份资源会适合你。通过动手操作代码,除了可以更好地理解理论,还能提升自己在 MAT
Matlab
0
2025-07-02