标题“Apache Flink 1.2 版本支持 ClickHouse SQL 交互依赖包.zip”描述了这是一个专为 Apache Flink 1.2 版本设计的扩展,支持与 ClickHouse 数据库的 SQL 查询交互。ClickHouse 是一款高性能的列式存储数据库管理系统,通常用于实时分析处理。由于 Flink 本身可能不直接支持 ClickHouse,这个依赖包填补了这一空白,允许 Flink 通过 JDBC 接口与 ClickHouse 进行数据交互。
Apache Flink 1.2 版本支持 ClickHouse SQL 交互依赖包.zip
相关推荐
Apache Flink 依赖项集合
此存储库包含 Apache Flink 项目的多个依赖项。这些依赖项的目的是在 Flink 发行版中提供依赖项的单个实例,而不是每个单独的模块对依赖项进行着色。除了 flink-shaded-hadoop-2 之外,这里包含的着色依赖项不公开任何传递依赖项。它们可能是自包含的,也可能不是自包含的。在使用这些依赖项时,建议直接处理 t。
算法与数据结构
6
2024-04-30
Apache Spark Hadoop 2.5 依赖包
这是一个 Apache Spark 开发所需的依赖包,适用于第一个 Spark 开发示例。
Hadoop
2
2024-05-13
精通Apache Flink,学习Apache Flink
根据所提供的文档内容,可以了解以下信息:1. Apache Flink简介:Apache Flink是一个开源的流处理框架,支持高吞吐量、低延迟的数据处理,具备容错机制,确保数据处理的准确性。Flink的架构包括Job Manager负责任务调度和协调,Task Manager执行任务。它支持状态管理和检查点机制,实现“恰好一次”状态计算。此外,Flink提供了窗口操作来处理滑动、滚动和会话窗口,以及灵活的内存管理。Flink还包含优化器,同时支持流处理和批处理。2. 快速入门设置:了解Flink的安装和配置步骤,包括在Windows和Linux系统上的安装,配置SSH、Java和Flink,以及启动守护进程和添加额外的Job/Task Manager。还需了解如何停止守护进程和集群,以及如何运行示例应用。3. 使用DataStream API进行数据处理:定义数据源,进行数据转换操作和应用窗口函数,支持物理分区策略,处理事件时间、处理时间和摄入时间。4. 使用批处理API进行数据处理:针对有限数据集,支持文件、集合、通用数据源及压缩文件,包括Map、Flat Map、Filter、Project等转换操作,以及归约操作和分组归约操作。5. 连接器:连接Apache Flink与其他系统,包括Kafka、Twitter、RabbitMQ和E。
flink
0
2024-08-21
Apache Flink 1.13.6 CDC资源包详解
“flink-1.13.6_cdc”指的是Apache Flink的1.13.6版本,专为Change Data Capture (CDC)设计。Apache Flink是一款流行的开源流处理框架,支持实时数据流处理。CDC技术用于捕获数据库中的变更事件,并将其传输到其他系统进行处理或存储。该资源包包含了部署Flink CDC环境所需的所有组件和配置,如Flink运行时、相关连接器及配置文件。子文件包括Flink MySQL CDC连接器的JAR文件(版本2.0.1)和Flink SQL Elasticsearch 7连接器的JAR文件。此外,还包含了Flink 1.13.6的二进制发行版,用于在本地或集群上部署和运行Flink作业。整体而言,这个资源包支持用户实时捕获MySQL数据库变更事件,并通过Flink进行处理,最终将结果实时写入Elasticsearch,以提供实时的索引和搜索能力。
flink
0
2024-09-20
20190629Apache Flink Meetup北京站.zip
20190629Apache Flink Meetup北京站.zip是关于Apache Flink技术交流活动的压缩文件,日期为2019年6月29日,地点在北京。文件内容可能包含演讲稿、幻灯片、录音或参会者的交流资料,主要围绕Apache Flink这一开源流处理框架展开。描述非常简洁,直接点明了这是一个与Apache Flink相关的Meetup活动,发生在2019年6月29日的北京。Meetup通常是指技术爱好者或专业人士聚集在一起讨论特定主题的线下活动,因此我们可以预期这个压缩包中的内容可能涵盖Flink的最新发展、应用案例、技术深度解析等。标签“flink”明确了这个压缩包的核心内容是与Apache Flink相关的。Apache Flink是一个用于处理无界和有界数据的开源流处理框架,它支持实时计算和批处理,具有高吞吐量、低延迟以及状态管理等特性,广泛应用于大数据领域。由于没有具体的文件名称列表,我们无法详细列举每个文件的内容,但可以推测可能包含以下类型的文件:演讲稿或幻灯片:详细介绍了Apache Flink的原理、架构、新特性和最佳实践。代码示例:展示如何在实际项目中使用Flink进行数据处理。分析报告:分享了Flink在不同行业的应用案例和性能测试结果。问答记录:记录了活动中对Flink技术问题的讨论和解答。录音或视频:重现了活动当天的演讲和讨论环节。 Apache Flink基础:Flink的核心概念,如DataStream API、JobManager、TaskManager以及它们在分布式环境中的作用。 Flink的数据处理模型:Flink如何实现事件时间窗口、状态管理和容错机制。 Flink与批处理:Flink与Hadoop MapReduce等批处理框架的差异,Flink在批处理上提供更好的性能和实时性。 Flink连接器和格式:Flink支持的各种数据源和数据接收器,如Kafka、HDFS、Cassandra。
flink
2
2024-07-12
JAVA大数据流处理Apache Flink示例代码.zip
在大数据处理领域,Apache Flink是一款强大的开源流处理框架,专为实时数据流和批处理而设计。这个名为\"JAVA大数据流处理Apache Flink示例代码.zip\"的压缩包很可能包含了一系列用Java编写的Flink示例代码,用于演示如何在实际项目中应用Flink技术。Flink的核心特性包括事件时间处理、窗口机制、状态管理和容错能力等。事件时间处理允许用户基于事件生成的时间来计算窗口,适应处理乱序数据的需求。窗口机制支持多种类型,如滑动窗口、会话窗口和tumbling窗口,根据事件时间或系统时间进行数据流的分组和聚合。状态管理确保在处理无界数据流时维持应用程序的一致性,支持检查点和保存点机制。Flink的容错机制通过状态快照和分布式一致性协议保证精确一次的状态一致性,即使在系统故障后也能恢复到正确状态。DataStream API和DataSet API提供了处理无界和有界流的编程接口,Java API易于理解和使用。Flink还包含丰富的输入/输出连接器和多种数据格式的支持,使得数据源和数据目标的集成变得简单。流与批处理的一体化使得在同一个平台上进行流和批处理变得无缝,提高了开发和运维的效率。Flink作为一个分布式系统设计,可以在多台机器上运行,提供高可扩展性和高吞吐量的数据处理能力。压缩包中的\"4.代码\"文件夹可能包含数据源连接和转换操作的示例代码。
flink
2
2024-07-15
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。
Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
flink
5
2024-05-12
Apache Flink 技术概览
Apache Flink 是一个用于处理数据流的开源框架。它由 Data Artisans 公司开发,该公司以其在分布式数据处理领域的专业知识而闻名。这本小册子浓缩了 Flink 的精华,为想要快速了解 Flink 核心概念和架构的读者提供了一个优秀的资源。
flink
3
2024-06-30
Apache Flink 架构解析
深入探讨 Apache Flink 的核心架构,并剖析其关键特性,帮助读者全面理解 Flink 的运行机制和优势。
1. 分层架构
Flink 采用分层架构设计,自下而上依次为:
部署层: 支持多种部署模式,包括本地、集群、云端等,以适应不同的应用场景。
核心层: 包含 Flink 的核心组件,如 JobManager、TaskManager、ResourceManager 等,负责作业的调度、执行和资源管理。
API 层: 提供不同级别的 API,包括 ProcessFunction API、DataStream API 和 SQL API,满足不同用户的编程需求。
库层: 提供丰富的扩展库,例如 CEP(复杂事件处理)、Machine Learning(机器学习)等,扩展 Flink 的应用范围。
2. 关键特性
高吞吐、低延迟: Flink 采用流式数据处理引擎,能够处理高吞吐量的实时数据流,并保证低延迟。
容错机制: Flink 内置强大的容错机制,支持 Exactly-Once 语义,保证数据处理的准确性。
状态管理: Flink 提供多种状态管理方案,例如内存状态、RocksDB 状态等,支持大规模状态存储和访问。
时间语义: Flink 支持多种时间语义,包括 Event Time、Processing Time 和 Ingestion Time,方便用户处理不同类型的数据流。
3. 应用场景
Flink 广泛应用于实时数据分析、事件驱动应用、数据管道构建等领域。
flink
3
2024-07-01