Momenergy函子指数的MATLAB实现,建立在复方差基础上,通过复值比对激光雷达扫描图像中总线和电机之间的差异,进行更精确的物体识别分析。基于素数比的函子用于检查momenergy的熵。示例数据来自125行MEMS激光雷达。
使用Momenergy Functors进行激光成像检测和测距
相关推荐
使用MATLAB程序进行ISAR转台目标成像仿真
该程序模拟了包含四个散射点的转台目标成像过程,采用解线频调制方法。随着技术的进步,这种仿真方法在雷达成像领域具有重要的应用前景。
Matlab
0
2024-09-29
使用区域增长算法进行图像修复和LIDAR车辆检测与车道变更检测
贡献者梅丽莎·陈(Melissa Chen)、高乐中(Lezhong Gao)、凯文·夸奇(Kevin Quach)、韦拜·斯里瓦斯塔瓦(Vaibhav Srivastava)使用区域增长聚类算法对3D点进行聚类,以过滤出具有宽度和深度的聚类。在360度全景图上,利用深度神经网络的预测框对聚类点进行投影,并选择最可能的框进行跟踪。
Matlab
0
2024-08-19
量子点激光器的动态仿真使用Matlab进行量子点激光器动态仿真
我提出了一组速率方程,用于模拟量子点激光器的性能。在这个新模型中,我考虑了均匀和非均匀展宽对性能的影响。
Matlab
0
2024-08-12
激光点云倒伏树检测算法
此仓库提供基于 ALS 的倒伏树检测算法的源代码。通过 mainfindFallenTrees.m 中的 findFallenTrees() 函数使用该算法。请查阅函数文档,以了解有关函数输入、输出和用法的更详细描述。注意:在运行函数之前,必须先调用脚本 startup.m,因为它将所有必需的文件路径添加到 MATLAB 路径中。算法流程:1. 读入和预处理数据2. 基于关联组件分析的分类过滤点云(可选)3. 使用基于迭代 Hough 变换的线检测检测倒伏树4. 使用卷积神经网络去除虚假倒伏树段(可选)步骤 2 和 4 可以使用用户自定义的分类器,这些分类器是使用 connected_component_training(步骤 2)和 final_classifier_training(步骤 4)文件夹中找到的函数进行训练的。
Matlab
5
2024-04-30
Android应用程序使用深度学习进行目标检测
Android应用程序使用深度学习进行目标检测是一个关于利用OpenCV和神经网络开发应用程序的项目,特别是TinyYOLOv3目标检测。该项目已经启动,提供了一个基本版本的应用程序。应用程序通过智能手机摄像头进行目标检测,用户只需按下一个按钮即可。要编译项目,用户需要在手机内部存储中创建一个名为\"dnns\"的文件夹,并下载必要的\"yolov3-tiny.cfg\"和\"yolov3-tiny.weights\"文件到该文件夹中。整个Android Studio项目可以在mainactivity.java中找到函数的实现。
Matlab
2
2024-07-27
使用simhash算法进行Excel文本相似度检测
利用simhash算法分析Excel中不同行的文本,并生成相似度矩阵。
spark
0
2024-09-13
使用MATLAB GUI界面进行边缘图像检测的多种算法
这是一个边缘检测的GUI界面,建议使用MATLAB 7.6以上版本打开,以免出现兼容性问题。
Matlab
2
2024-07-27
使用Matlab进行Canny边缘检测的机器视觉图像处理
机器视觉在各个领域广泛应用,处理受环境噪声等影响的图像至关重要。介绍的Matlab代码能有效进行Canny边缘检测,是图形处理中的关键工具。
Matlab
0
2024-10-01
使用Spark和Shark进行大数据转换
利用Spark和Shark技术,可以有效地转换大数据,这些技术在intel内部的讲义中详细介绍。
spark
1
2024-07-31