这是一段内存和缓存效率高的C/C++实现,用于自定义算法中的无向图拓扑识别与网络优化设计,依赖已编译的Fortran BLAS二进制文件以加速线性代数计算。使用此代码需要构建适用于CPU架构的BLAS软件包,并在项目中链接二进制文件。代码实现了三种方法,用于发现带有随机噪声的无向共识网络的拓扑结构识别与优化设计:原始-双重IP方法,近端梯度法,近端牛顿法。近端梯度法通过软阈值运算符更新控制器图拉普拉斯算子。在IP方法中,牛顿方向通过基于预条件共轭梯度的迭代获得,而在近端牛顿法中,通过活动变量集上的循环坐标下降计算。该C/C++实现已成功解决具有数百万边的图形问题,运行时间仅需几分钟。
Matlab实现无向图拓扑识别与网络优化设计
相关推荐
Java实现无向图PageRank算法
分享一个Java实现的无向图PageRank算法,代码经过测试,能够完美运行,可供学习和参考。
算法与数据结构
2
2024-05-27
评估有向图与无向图的连接性
评估有向图与无向图在连接方面的特性。
算法与数据结构
0
2024-10-12
无向图邻接链表算法实践
无向图邻接链表算法实践
本实验基于李春葆老师的《数据结构与算法》课程,实践了利用邻接链表存储无向图并实现相关算法。实验内容涵盖了图的基本概念、邻接链表的构建、深度优先搜索、广度优先搜索等经典算法。通过实验,我深入理解了图论基础,掌握了使用邻接链表表示图结构的方法,并熟练运用相关算法解决实际问题。
算法与数据结构
5
2024-05-25
利用 graphViz4Matlab 在 MATLAB 图形窗口中绘制有向/无向图
graphViz4Matlab 是一个 MATLAB 工具箱,可通过 GraphViz 在 MATLAB 图形窗口中显示有向或无向图。
Matlab
3
2024-05-30
MATLAB拓扑优化代码-UNVARTOP非平滑变分拓扑优化实现
项目简介
这是一个使用UNVARTOP方法进行2D拓扑优化的MATLAB代码示例(用于教育目的)。
代码来源
该代码基于D. Yago, J. Cante, O. Lloberas-Valls和J. Oliver的研究,发表于《结构和多学科优化》(2020年)。
方法特点
采用非平滑变分拓扑优化(UNVARTOP)方法,通过特征函数定义的材料方法进行双材料设置。
使用判别函数获得清晰边界,进而计算特征函数。
最优拓扑的计算涉及到封闭形式的代数系统解和松弛拓扑导数(RTD)。
最终的灵敏度通过拉普拉斯平滑法进行正则化,以控制网格大小。
在优化过程中,参考伪时间逐步增加,以获得中间收敛的最优拓扑,即增量时间提前方案。该方法提供最终最佳解决方案及在少量迭代中针对不同体积百分比的最佳拓扑集。
系统要求
在您的操作系统中必须安装MATLAB。
Matlab
0
2024-11-04
神经网络拓扑结构设计
神经网络的拓扑结构设计是训练前的关键步骤,主要包括确定隐层神经元数量、初始权值和阈值(偏差)。理论上,隐层神经元越多,逼近效果越好。但实际应用中,过多的隐层神经元会导致训练时间延长,网络容错能力下降。因此,需要权衡逼近精度和训练效率。如果训练后的神经网络精度不理想,则需要重新设计拓扑结构或调整初始权值和阈值。
数据挖掘
5
2024-05-20
Matlab口罩识别系统设计与实现
本项目基于Matlab平台,实现了口罩识别功能,并设计了用户友好的图形界面。项目代码经过严格测试,可稳定运行,为相关领域的研究和学习提供了参考。项目易于理解和扩展,适合作为课程设计、毕业设计等学习资源。
Matlab
1
2024-05-30
设备绘制的网络拓扑结构图设计
设备绘制的网络拓扑图是网络规划和管理中的重要工具,用于展示各设备之间的连接关系和布局。
Hive
0
2024-08-15
小世界和无尺度网络的 MATLAB 程序实现
本 MATLAB 程序提供了一种生成小世界 (SW) 和无尺度 (NW) 网络的方法,允许用户手动调整参数以获得所需结果。
Matlab
3
2024-05-31