字符识别是模式识别领域中的一个传统课题,随着技术进步,其在不同应用中的方法和条件也在不断演变。讨论了利用神经网络进行数字和字符识别的问题,特别是在matlab仿真环境下的实验应用。
BP网络在数字和字母识别中的应用
相关推荐
MATLAB利用BP神经网络识别英文字母的应用
MATLAB利用BP神经网络进行英文字母识别的实际应用正在积极探索和开发中。
Matlab
0
2024-08-12
数字识别BP神经网络源代码下载
数字识别BP神经网络源代码使用指南:首先,打开256色图像,进行归一化处理,点击“一次性处理”,最后点击“R”或通过菜单进行识别。识别结果显示在屏幕上并输出到result.txt文件。系统识别率通常为90%。进阶操作包括图像预处理步骤:256色位图转灰度图、灰度图二值化、去噪、倾斜校正、分割、标准化尺寸、紧缩重排。使用时需确保win.dat和whi.dat与图片在同一目录下。
Oracle
0
2024-08-25
bp神经网络在印刷汉字识别中的应用
本科毕业设计涉及bp神经网络在印刷汉字识别方面的研究。
Matlab
2
2024-07-27
使用BP神经网络在Matlab中实现数字0~9识别
这是一个Matlab源码,使用BP神经网络来开发一个能识别0~9数字的系统。系统界面友好,包含训练样本和含噪声的数字图片。随着技术进步,BP神经网络在数字识别领域展现出巨大潜力。
Matlab
0
2024-09-29
基于MATLAB与BP神经网络的手写数字识别系统
该系统运用BP神经网络技术, 通过Matlab平台实现手写数字的识别功能。用户可在交互界面上传测试图片,系统将自动进行图像预处理、读取隐含层信息等操作,最终输出识别结果。
Matlab
2
2024-05-28
数字识别神经网络BP源代码使用说明.rar
数字识别神经网络BP源代码使用说明:第一步,训练网络,使用预设训练样本进行操作。读者也可直接使用已训练好的网络参数进行识别,无需再进行训练。第二步,图像识别操作:打开256色图像,进行归一化处理,点击“一次性处理”,然后选择“R”或通过菜单执行识别操作。结果将显示在屏幕上,并输出至result.txt文件。系统的平均识别率达90%。此外,还可逐步执行图像预处理工作,包括“256色位图转灰度图”、“灰度图二值化”、“去噪”、“倾斜校正”、“分割”、“标准化尺寸”和“紧缩重排”。注意:识别图片需与win.dat和whi.dat文件置于同一目录,这两文件保存了训练后网络的权值参数。详细使用方法请参阅相关书籍说明。
Oracle
0
2024-08-10
MATLAB在数字图像处理中的应用
MATLAB在数字图像处理中的应用。MATLAB在数字图像处理中的应用。MATLAB在数字图像处理中的应用摘要:介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。关键词:MATLAB;图形处理;边缘检测中图分类号:TP317.4文献标识码:A
Matlab
2
2024-07-24
matlab在数字信号处理中的应用
介绍了matlab在数字信号处理中的应用,利用matlab作为仿真计算工具解决了两个数字信号处理实际问题,并详细解释了相关代码。
Matlab
0
2024-09-30
BP神经网络改善手写数字识别问题matlab源代码
希望这份matlab源代码能为您提供实质性帮助!BP神经网络在改进手写数字识别方面具有显著效果。
Matlab
0
2024-08-30