利用南京燕子矶及大厂区两个过江输电铁塔上的风速梯度观测数据,探讨了中性稳定条件下水陆临界地形对不同风向扇面的铁塔风场特征的影响。统计分析显示,在水平尺度2000米范围内,水陆临界地形对下风向铁塔风场特征的影响与铁塔距离水陆临界地形的水平距离之间存在一定的比例关系。根据所采集的资料和统计结果,这种比例约为1/10。
水陆临界地形下输电铁塔风状况的风场分析(1988年)
相关推荐
GFS.json风场数据
提供GFS模型的风场数据,用于气象分析和预测。
NoSQL
11
2024-05-13
渤海湾西岸城市热岛效应对海陆风特征的影响分析(2013年)
利用2008年全年天津市渤海湾西岸的14个自动气象站逐小时和地面常规资料,采用统计分析方法,研究了城市热岛效应对海陆风特征的影响。结果显示,在强热岛条件下,渤海湾西岸海风发生频率较低,且阻碍了向内陆的传播;而在弱热岛条件下,内陆站海风频次较高,但风速相对较小。城市热岛效应还推迟了周围郊区站海风的开始时间,缩短了海风持续时间。此外,城市站的海风风速与热岛强度呈负相关,但热岛效应对陆风风速的影响较大。
统计分析
1
2024-07-15
matlab程序文件谐波合成法模拟脉动风场
这是一个使用matlab二次开发软件模拟的脉动风场谐波合成法程序文件。
Matlab
0
2024-08-13
支付风控模型分析及其控制策略解析
知识图谱画像从群体和个体的统计角度评估事件风险,而图谱则更进一步,从关系角度评估风险。知识图谱是由Google提出并应用于搜索引擎,后在多个领域广泛应用。交易作为社会行为,通过关系分析,能更精确了解其中的风险。例如,如果A是高风险用户,并且经常与B有交易关系,那么B的风险等级也会相应提高。图谱是一种语义网络,基于图的数据结构,由点和边组成。点表示实体如人、公司、电话、商品、地址,边表示实体间关系。支付风控类似于建立画像,需要支持各种实体和它们之间的关系,如人、机构、地区、日期、电话、手机号、设备、商品等。图谱数据源类似于画像,也需要有效的互联网数据和专业数据库支持,以提高数据质量和关系计算性能。
算法与数据结构
0
2024-08-08
麦克风密度几何设计
基于麦克风密度的统计分析,优化阵列几何形状以提升沉浸式环境中语音信号波束形成性能。提出目标函数规则的优化算法,综合声源分布先验知识和声学场景概率描述,构建具有出色SNR性能的阵列。通过变异常规配置,克服常规阵列局限性,提供易于安装且具有良好SNR结果的阵列。
统计分析
6
2024-05-20
Oracle高手指南孙风栋的修炼秘籍
Oracle高手指南:孙风栋的修炼秘籍,完整PDF版,这是第一部分。
Oracle
0
2024-09-29
ACC数据库补充无尘风软件
配套无尘风软件使用的ACC数据库,可以提供下载
Access
5
2024-05-01
金融风控信用卡评分建模流程
信用风险定义风险管理概念始于美国,后随着互联网和新技术的兴起而普及。大数据和机器学习技术让风险管理更加精准。信用风险评分卡类型未提及。信用评分模型建立的基本流程1. 数据收集:收集银行征信数据和用户互联网数据(人际关系、消费行为、身份特征等)。2. 数据处理:对数据进行清洗、转换和特征工程。3. 模型构建:选择合适建模算法,训练模型。4. 模型评估:评估模型的预测能力和稳定性。5. 模型部署:将模型部署到生产环境,用于授信产品的风控。
数据挖掘
4
2024-05-01
机器学习在金融风控中的应用:实战案例与数据分析
金融风控是保障金融机构稳健运营的关键环节,而机器学习技术的应用为金融风控带来了新的突破。通过分析海量业务数据,机器学习模型可以识别潜在风险,提高风险预测的准确性和效率。
数据分析:洞察风险本质
在金融风控中,数据分析是构建有效模型的基础。通过对借贷用户、交易记录等数据的深度挖掘,我们可以洞察风险的本质,识别潜在的欺诈行为,并制定相应的风控策略。
模型构建:精准预测风险
利用机器学习算法,我们可以构建风险预测模型。例如,逻辑回归、决策树、支持向量机等模型可以根据用户特征预测借贷违约概率。深度学习模型则能够捕捉更复杂的特征关系,进一步提高预测精度。
实战案例:应用场景与效果
机器学习在金融风控领域已有诸多成功案例,涵盖信贷审批、反欺诈、风险定价等多个方面。例如,通过机器学习模型识别高风险用户,可以有效降低信贷违约率。在反欺诈领域,机器学习模型可以实时监测异常交易,及时阻止欺诈行为。
不断优化:持续提升风控能力
金融风控是一个动态变化的领域,机器学习模型需要不断优化以适应新的风险模式。通过持续的数据积累、模型迭代和算法创新,我们可以不断提升金融风控能力,保障金融安全。
统计分析
2
2024-05-19