Luo等人在其论文“迭代合奏平滑器作为正则化最小平均成本问题的近似解决方案:理论和应用”中介绍了基于正则化的Levenburg-Marquardt的迭代集合平滑器(iES),编号为SPE-176023-PA,详细描述了其MATLAB实现。该算法主要用于历史匹配问题,特别是在集合型储层数据同化中的应用。着重介绍了如何在内部历史匹配工作流中应用iES,以估算Lorentzen 96模型的初始条件。
迭代集合平滑器基于正则化的Levenburg-Marquardt优化算法
相关推荐
基于空间平滑的MUSIC算法性能优化
提供基于空间平滑技术的MUSIC算法MATLAB实现,提升算法的精度和稳定性。代码实现针对MUSIC算法在相干信号环境下性能下降的问题,通过空间平滑技术对协方差矩阵进行处理,有效提高了算法的分辨率和估计精度。
Matlab
2
2024-05-31
matlab实现的正则化粒子滤波算法
这篇文章介绍了如何用matlab编写正则化粒子滤波算法,用于跟踪和比较滤波效果。技术详解和实现步骤让读者能够深入理解该算法在实际应用中的作用。
Matlab
2
2024-07-31
基于numpy的离散傅里叶变换平滑算法
numpy-ml为您提供了一个高效且易于理解的机器学习算法集合,专注于以numpy实现。此仓库包含多种模型的代码,如EM算法训练高斯混合模型,隐马尔可夫模型的维特比解码,以及使用Baum-Welch算法和向前-向后算法进行MLE参数估计的潜在Dirichlet分配(主题模型)。此外,还包括通过变分EM估计MLE参数的标准模型,带有MAP参数估计的平滑模型,以及各种神经网络层和操作,如LSTM、Elman样式的RNN、点积注意力机制,以及变压器式多头自注意力机制等。仓库中还涵盖了ResNet样式的残差块、WaveNet样式的残差块,以及正则化器、优化器等算法。
Matlab
0
2024-09-25
Levenberg-Marquardt算法的Matlab实现
Levenberg-Marquardt算法,一种在优化计算中用于最小二乘拟合的算法,在Matlab中得到了实际应用。
Matlab
1
2024-07-19
流形正则化Matlab代码基于低维流形模型的图拉普拉斯正则化
随着技术进步,我们提出了一种基于低维流形模型的图拉普拉斯正则化Matlab代码,用于3D点云降噪。由曾增、张Gene、吴敏、庞佳豪和成阳在IEEE Transactions上发表。代码包括主要功能如添加噪声的主程序main_addnoise.m、GLR去噪的主程序main_glr.m、GLR去噪函数pcdGLR.m、GLR工具集、用于计算均方误差的度量标准、参数设置函数setParameter、样本点云模型“anchor”以及真实数据和不同噪声水平下的处理结果。
Matlab
3
2024-07-13
基于全变分正则化的图像去噪算法及Matlab实现
提供了一种基于全变分正则化的图像去噪算法,并附带Matlab实现代码。内包含代码运行结果示例图,可直观展示算法的去噪效果。
Matlab
2
2024-06-30
Primal-Dual Algorithm Bregman迭代变分正则化中的邻近算子-Matlab开发
该算法是为了生成对Tikhonov函数的一般形式最小化器的迭代正则化近似而设计的。详细的数学工作可以在https://arxiv.org/abs/1903.07392找到。
Matlab
0
2024-09-29
基于MATLAB的OMP算法与L2正则化随机生成树近似实现
OMP算法MATLAB代码 - L2正则化随机生成树近似
在该存储库中,您可以找到RTA算法和改进的推理算法的相关代码。RSTA算法通过L2范数正则化中的随机生成树近似,实现多标签结构化输出预测。
代码开始与编译
请从MATLAB函数run_RSTA.m入手检查RSTA代码。在编译代码之前,请确保您具有支持OMP的gcc编译器。
推理功能基于C中的OpenMP库实现,支持对多棵树进行并行计算。可以使用以下命令来编译C函数(请注意,您可能需要更改gcc编译器的路径):
mex compute_topk_omp.c forward_alg_omp.c backward_alg_omp.c CFLAGS=\"$CFLAGS -fopenmp -std=c99\" LDFLAGS=\"$LDFLAGS -fopenmp\" CC=\"/usr/bin/gcc\"
mex find_worst_violator_new.c CFLAGS=\"$CFLAGS -fopenmp -std=c99\" LDFLAGS=\"$LDFLAGS -fopenmp\" CC=\"/usr/bin/gcc\"
执行RSTA算法
在MATLAB中运行RSTA算法,请尝试以下命令,该命令将在5个随机生成树且K最佳列表的情况下运行:
% MATLAB代码示例
run_RSTA(...);
本代码支持多种参数调整,以满足不同的应用需求。
Matlab
0
2024-10-31
基于频谱分析的信号优化平滑技术
信号优化平滑技术这一章探讨了两种利用频谱分析实现最佳信号平滑的创新经验方法。这两种方法适用于受噪声干扰的平稳和非平稳、线性和非线性信号,并基于频谱表示定理 (SRT) 进行信号分解,并利用最优控制的动态特性。
方法特点:* 生成低分辨率和平滑滤波器* 分别适用于长期和短期最佳跟踪和预测
验证方法:* 采用蒙特卡洛模拟对三类主要信号进行分析* 将双 SRT 方法与广为人知的经验希尔伯特-黄变换 (HHT) 的类似优化版本进行比较
Matlab
2
2024-05-28