本资源包含rosetta软件安装包及其简易教程,适用于数据集的约简,同时提供多篇粗糙集论文和相关的matlab代码。
rosetta软件与粗糙集论文及matlab代码下载
相关推荐
粗糙集理论软件Rosetta的属性约简方法及其应用
粗糙集理论是数据挖掘和知识发现领域的重要方法,主要应用于处理不完整或不确定的数据。深入探讨了粗糙集软件Rosetta在属性约简中的应用。Rosetta专为实现粗糙集理论算法而设计,提供了有效的数据分析和知识提取方法。其中,属性约简是其核心功能之一,通过贪婪算法和遗传算法等多种优化策略,帮助用户减少特征维度,提高模型解释性和效率。
算法与数据结构
2
2024-07-29
粗糙集理论软件RSES 2.2的应用与功能详解
粗糙集理论(Rough Set Theory)是波兰计算机科学家Zdzisław Pawlak于1982年提出的一种处理不完整或不确定信息的数学工具。在软件工程、数据挖掘和人工智能领域广泛应用。\"粗糙集理论处理软件RSES 2.2\"专注于实现粗糙集理论算法,其主要功能包括数据预处理、信息系统构建、约简、决策规则生成、核计算、不确定性处理和可视化。用户通过安装并按照指南操作\"RSES 2.2_inst.exe\"文件,可以导入数据集并执行各种数据分析操作。
数据挖掘
3
2024-07-23
粗糙集属性约简调研
本调研分析了粗糙集理论中属性约简的方法,为大学生理解这一概念提供了指南。
数据挖掘
2
2024-04-30
粗糙集理论的学术探索与研究
粗糙集理论是处理不确定、不完整、不一致知识的数学工具,由Z. Pawlak于1982年提出,解决现实世界中的不确定性问题。该理论在数据挖掘、机器学习等领域广泛应用。不可区分关系是其核心概念之一,用于描述对象间的相似性。信息系统(I = (U, A, V, F))定义了论域、属性集合和属性值域之间的关系。上下近似集则描述了集合的不确定边界。
数据挖掘
0
2024-08-29
Matlab开发基于紧致模糊模型的粗糙集与细糙集
Matlab开发:基于紧致模糊模型的粗糙集与细糙集,创建一种无需转换输入变量的易解释模型。
Matlab
2
2024-07-22
基于粗糙集的数据挖掘技术探索
基于粗糙集理论的数据挖掘方法正在被广泛研究和应用。这一方法不仅能够处理数据中的不确定性和不完整性,还能发现隐藏在数据背后的有价值信息。研究者们通过改进算法和优化模型,不断提升其在各个领域的应用效果和准确度。未来,随着技术的进步和理论的深入,基于粗糙集的数据挖掘技术有望在更广泛的领域展现其潜力。
数据挖掘
1
2024-08-03
粗糙集约简系统软件的开发与优化
现有大部分数据库系统如SQL Server等,具有高效的存取和存储优势,适合大规模数据处理。为实现粗糙集的数据挖掘,我们选择使用SQL语言操作,并利用高性能的数据库管理系统。系统采用VC#.NET和SQL Server编写,全部使用SQL Server存储过程处理数据,以提升效率。在Pentium 4 1.80GHz处理器,512MB内存,20G硬盘空间,MicroSoft Windows XP Service Pack 2, MicroSoft .NET Framework SDK v1.1,Microsoft SQL Server 2000环境下运行。系统主要处理信息系统和决策表,通过不同数据源获取数据集合,支持属性集合选择和信息系统生成,使用正域、差别矩阵和信息熵方法进行属性约简,分析结果的正确性和独立性。决策表操作支持值约简生成规则集合,验证规则的正确性。
数据挖掘
1
2024-08-04
基于粗糙集的条件信息熵权重方法
该方法利用粗糙集理论处理不确定信息,通过计算条件信息熵来量化属性重要性,进而确定权重。
算法与数据结构
2
2024-05-27
道路运输管理信息数据挖掘:粗糙集与关联规则方法
道路运输管理信息数据常存在不一致、不精确和不完整等问题。为此,本研究结合粗糙集理论的系统归纳思想和属性约简方法,提出了一种将粗糙集分析与经典关联规则相结合的数据挖掘方法。
该方法利用粗糙集分析规则条数与支持度、置信度之间的关系,并通过道路运输管理的实际案例验证了其科学性和有效性。结果表明,该方法能够有效解决道路运输管理的实际问题,并在所选案例中实现了约简 33.3% 条件属性的优化效果。
数据挖掘
3
2024-05-19