peppernoise是一个用于在图像中添加椒盐噪声的工具,编译后的可执行文件需要指定参数才能运行。
peppernoise图像中的椒盐噪声注入
相关推荐
图像处理中的椒盐噪声增强技术讲解
图像处理中常见的一种噪声——椒盐噪声,可以通过调整图像的空域增强来有效减少。示例中,使用lena.bmp图像引入椒盐噪声,然后展示了处理前后的对比结果。
Matlab
0
2024-09-21
Matlab开发中的图像处理技术中值滤波消除椒盐噪声
中值滤波器是一种奇数阶方阵,在Matlab开发中被广泛应用。它有效消除图像中除边界像素外的椒盐噪声,生成平滑的图像输出。该技术提升了图像的PSNR质量,特别在处理边界像素值时效果显著。
Matlab
0
2024-08-09
改进的自适应加权平均滤波器去除椒盐噪声的研究
2020年6月12-13日,土耳其伊斯坦布尔举行了第二届电气、通信和计算机工程国际会议(ICECCE),Erkan等人在会议上发表了题为“改进的自适应加权平均滤波器去除椒盐噪声”的论文。研究介绍了一种名为改进的自适应加权平均滤波器(IAWMF)的新方法,用于有效去除图像中的椒盐噪声。IAWMF能够根据自适应窗口中的无噪声像素权重来计算新的灰度值,相比传统方法更接近中心像素的原始灰度值。此外,该方法利用了AWMF的优势,减少了误检噪声像素的情况。实验结果表明,IAWMF在图像去噪方面表现优异,超过了其他先进的方法。DOI:10.1109/ICECCE49384.2020.9179351。
Matlab
0
2024-08-15
双边滤波:图像增强中的边缘保留和噪声平滑
双边滤波是一种有效的图像增强技术,保留图像中的锐利边缘,同时平滑噪声。通过遍历图像中的每个像素并根据其邻域的相似性调整其权重,双边滤波器可以实现这一目标。它在图像去噪、边缘检测和图像增强等领域具有广泛的应用。
Matlab
2
2024-05-30
基于Matlab的图像噪声滤波仿真
本实验中,我们在两幅灰度图像中分别添加了不同强度的高斯噪声和椒盐噪声。随后,使用3×3均值滤波器和3×3中值滤波器对噪声图像进行处理,并分别计算了两种处理方法的峰值信噪比(PSNR)。此外,我们还探讨了在原始图像上采用极大值滤波和极小值滤波的仿真效果,并对处理后的图像进行了详细分析。
Matlab
0
2024-09-30
AWMF去椒盐噪声的新型自适应加权均值滤波器论文代码
这是一个关于用于去除椒盐噪声的AWMF滤波器的源代码。结果显示出很大的潜力。参考文献是P. Zhang和F. Li的《A New Adaptive Weighted Mean Filter for Removing椒盐噪声》,发表于2014年的SPL。
Matlab
0
2024-09-27
Matlab处理高斯噪声图像的降噪技术
在处理添加了高斯噪声的图像时,可以采用均值滤波和中值滤波等技术进行降噪。Matlab提供了有效的工具和算法来实现这些技术。
Matlab
0
2024-10-01
基于均匀掩码区域的图像噪声过滤算法
该算法通过在目标像素周围区域内搜索最均匀的掩码来实现图像降噪。算法使用 5x5 像素的方形邻域和 3x3 掩码评估每个掩码区域的灰度均匀性,并将目标像素替换为 5x5 搜索区域内找到的最均匀 3x3 掩码的中心像素值。 该算法的理论基础来源于 Nagao 和 Matsuyama 在其论文《边缘保持平滑》中提出的方法。
Matlab
4
2024-05-30
【专家探讨】MATLAB优化图像噪声处理方法
MATLAB技术在图像处理中的应用日益突出,特别是在减少图像噪声方面展现出了独特的优势。
Matlab
0
2024-10-01