优化不确定数据集频繁模式挖掘的近似算法
为了提升在不确定数据集上频繁模式挖掘的效率,针对现有算法在判断是否需要创建子头表时计算量较大的问题,提出了近似挖掘策略AAT-Mine。该策略在损失少量频繁项集的基础上,显著提高了整体算法的挖掘效率。实验采用三个典型数据集对算法进行了测试,并与目前最优算法及典型算法进行了性能对比,结果表明AAT-Mine在时空效率上均有显著提升。
数据挖掘
0
2024-08-03
高级算法设计实验2Python实现搜索算法
本实验教授搜索算法的基本设计思想与方法,特别是A*算法的详细实现。通过高级编程语言Python,学生将能够熟练应用这些算法解决寻路问题,并验证其正确性。
算法与数据结构
0
2024-09-23
高级算法设计实验1分治算法解决凸包问题
凸包问题是指给定平面上n个点的集合Q,需要找出一个凸多边形P,使得Q中的所有点要么在P上,要么在P内部。本实验实现了基于分治思想的凸包求解算法。
算法与数据结构
2
2024-07-16
伊利诺伊大学CS598CSC课程:探索近似算法的奥秘
伊利诺伊大学CS598CSC课程深入浅出地讲解了近似算法的核心概念与应用。课程内容涵盖了各种经典算法,并辅以实际案例分析,帮助学生掌握设计和分析高效算法的技巧。
算法与数据结构
2
2024-05-24
基于MapReduce的并行近似SS-ELM算法
针对大规模数据集,提出了基于MapReduce的并行近似SS-ELM算法。
Hbase
0
2024-08-08
KNN算法人脸识别实验设计与实现
本次实验尝试通过将人脸的图像转化为特征向量,然后训练数据集,通过计算欧氏距离找到与待测人脸最接近的k个人脸,实现一个基于KNN的人脸识别算法,达到人脸识别的入门级学习。算法简介: KNN算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测。KNN算法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。k值的选择、距离度量以及分类决策规则是KNN算法的三个基本要素。算法流程: 1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。遍历训练数据集,计算预测样本与其他每一个样本点的距离,按照由近到远排序。完成训练得到训练后的数据集After training Data Set 2. 定义一个KNN参数k值(1)。
Matlab
0
2024-11-04
图像分割算法对比实验
采用经典图像分割算法(Roberts、Sobel、Prewitt、LOG、Canny)对灰度图像进行分割并进行比较。程序中使用edge函数指定具体的边缘检测方法和参数,并展示分割后的图像。
Matlab
4
2024-05-25
算法设计与分析(第3版)课件PPT优化
《算法设计与分析》是计算机科学核心课程,专注于有效问题解决,通过算法设计、实现和分析优化计算过程。第三版课件PPT涵盖最新研究和教学经验,深化学生和专业人士对算法的理解和应用。包括算法基础、排序与查找、图算法、动态规划、分治策略、贪心算法、回溯与分支限界、数据结构、递归与递归树、概率算法与随机化、近似算法及计算复杂性理论。
算法与数据结构
0
2024-09-13
Weka分类算法实验报告
利用Weka工具对分类算法进行实验分析,探讨其在数据挖掘任务中的应用。
数据挖掘
5
2024-05-01