为了改进现有的试题管理系统在试卷生成环节中的速度和质量,结合粗粒度并行遗传算法与自适应技术,提出了一种自适应调整种群迁移的快速并行遗传算法。从试题库编码方案、遗传策略、适应度函数的优化、交叉变异算子的选择和自适应度值函数的选取等多个方面进行设计,取得了显著的适应度提升。采用并行策略显著提高了算法的运行速度。仿真实验显示,该算法成功应用于自动组卷,提高了组卷效率和成功率,具备广泛适用性。
研究论文-基于优化遗传算法的快速自动试卷生成算法研究.pdf
相关推荐
IMEI 生成算法研究
本研究探讨了国际移动设备识别码 (IMEI) 的生成算法。IMEI 是用于识别移动设备的唯一号码,由 15 位数字组成。了解 IMEI 生成算法对于移动设备身份验证、网络安全和设备跟踪至关重要。
本研究将深入研究 IMEI 结构、校验位计算以及不同制造商和设备类型使用的各种生成算法。此外,还将分析 IMEI 生成算法的安全性,并探讨潜在的漏洞和攻击向量。
研究方法
本研究采用文献综述、算法分析和实验评估相结合的方法。
文献综述: 收集和分析有关 IMEI 标准、生成算法和安全性的现有文献。
算法分析: 深入研究 IMEI 生成算法的数学基础和逻辑结构。
实验评估: 使用编程语言(如 Python 或 Java)实现 IMEI 生成算法,并通过生成和验证 IMEI 号码来评估其有效性和安全性。
预期成果
本研究提供对 IMEI 生成算法的全面理解,包括其结构、变体和安全含义。研究结果将以研究论文的形式发表,并可用于开发更安全的移动设备身份验证和网络安全措施。
关键词
IMEI,算法,生成,安全,移动设备
Access
2
2024-05-29
论文研究-基于遗传的PAM算法
从给定文件的信息中,我们可以提取和总结出以下IT知识点: 1. 数据挖掘的概念与发展:数据挖掘是通过算法搜索大量数据中隐藏信息的过程,目的是为人类服务。随着数据量的急剧增长,数据挖掘成为研究热点,备受关注。在数据挖掘领域,聚类是一个核心工具,其研究具有特殊重要性。 2. PAM算法的介绍与应用场景:PAM(Partitioning Around Medoids)算法是经典的K-中心聚类算法,通过选择簇中的中心点来代表整个簇。PAM算法对异常值和孤立点有良好的鲁棒性,并能处理不同类型的数据点。尤其适用于小数据集,但对输入参数较为敏感。 3. 遗传算法的概念与优势:遗传算法是一类模仿生物进化过程的优化算法,通过模拟自然选择和遗传学原理来解决问题。广泛应用于各种优化和搜索问题,尤其在问题空间较大时,能快速找到全局最优解。 4. 遗传算法与PAM结合的优势:PAM算法对输入参数敏感,研究者尝试引入遗传算法优化输入参数,提高聚类质量和算法效率。结合遗传算法的PAM(GPAM)能够提升聚类准确性和运行速度,有助于更高效地处理数据挖掘任务。 5. PAM算法的具体步骤与原理:PAM算法首先随机选择每个簇的初始中心点,然后根据与中心点的相异度将剩余对象分配给最近的簇。通过替换非代表对象和中心点的不断迭代,提升聚类质量。聚类质量的评估依赖于代价函数,用于判断替换是否能提升聚类效果。 6. 数据挖掘中的k中心点算法与k均值算法对比:k中心点算法与k均值算法主要区别在于,前者使用簇中的中心点作为参照,而后者使用均值。k均值算法对离群点敏感,易受极端值影响,导致聚类结果失真,而k中心点算法更为健壮。 7. 数据挖掘中的聚类问题及其解决策略:聚类问题是将数据集中的对象分组,使同组对象相似度高,不同组对象相似度低。PAM算法通过反复迭代优化中心点选择,提升聚类效果。通过这些知识点的详细解释,了解在数据挖掘领域如何改进经典聚类算法,结合优化算法解决实际问题,实现更高效智能数据处理。
数据挖掘
0
2024-10-10
遗传算法研究综述_马永杰.pdf
系统研究了遗传算法在国内外的编码策略、遗传算子、参数确定、收敛性及其在新兴应用领域中的最新进展。通过对近年来大量研究文献的统计分析,揭示了遗传算法研究的热点和未来发展方向。
统计分析
2
2024-07-16
MATLAB 中虚拟位置生成算法研究
本研究探讨了使用 MATLAB 编程语言实现的两种算法来生成虚拟位置。这两种算法被称为 DLG1 和 DLG2。该研究包括以下内容:
算法描述:- DLG1 算法:根据隐私等级确定匿名度量。- DLG2 算法:基于局部几何来生成虚拟位置。
算法实现:- 该算法使用 MATLAB R2017a 编程语言实现。- 使用 GeoLife 数据集的数据来生成虚拟位置。
算法评估:- 研究了 DLG1 算法在不同隐私等级下的性能。- 评估了 DLG2 算法在不同局部几何条件下的效果。
研究结论:该研究提供了 DLG1 和 DLG2 算法在 MATLAB 中生成虚拟位置的见解。这些算法可用于隐私保护和数据增强应用程序。
Matlab
3
2024-05-30
基于遗传算法挖掘最优频繁模式研究框架
数据爆炸式增长和自动化数据收集工具的普及降低了数据存储成本。然而,数据的高维度、异构性和复杂性给信息提取带来了挑战。数据挖掘技术应运而生,关联规则挖掘作为模式发现技术,可从海量数据中挖掘有价值的模式,但随着实时数据更新,相关性不断变化,需要高效地发现最优频繁模式。为解决传统关联规则挖掘的挑战,提出最优频繁模式系统(OFPS)。OFPS将数据预处理、频繁模式树构建和遗传算法相结合,有效发现最优频繁模式,并通过实验验证了其性能。
数据挖掘
9
2024-04-29
基于改善初始种群的免疫遗传算法优化问题JSP研究
上传了一篇关于免疫遗传算法在JSP优化问题中的文档,供大家学习。最近在研究免疫优化智能算法的应用。
算法与数据结构
2
2024-07-29
论文研究-基于Hadoop平台的SVM_WNB分类算法的研究.pdf
SVM算法和朴素贝叶斯分类算法在复杂数据分类中表现优异,但其缺点影响了分类效果。传统数据挖掘算法无法满足海量数据处理需求。为解决这些问题,改进了朴素贝叶斯算法,提出SVM_WNB分类算法,并在Hadoop云平台上实现并行处理,从而处理大数据。实验表明,改进后的算法在准确性和效率上有显著提升,对大数据分类有显著效果。
数据挖掘
2
2024-07-12
遗传算法应用于排课问题的研究
主要探讨了数据挖掘领域中的重要算法——遗传算法。文章详细阐述了遗传算法的概念、特点,以及基本的操作流程和核心要素,重点分析了遗传算法在解决排课问题中的应用。讨论了编码形式的选择、适应度函数的确定以及遗传操作的具体实施,以优化资源分配,有效解决资源利用冲突。
数据挖掘
0
2024-09-21
Apriori算法研究论文
这篇论文探讨了Apriori算法在数据挖掘中的应用。
数据挖掘
2
2024-07-16