无参密度估计,不同于优化L2误差的交叉验证(CV),拓扑密度估计(TDE)优化单峰类别的估计。在高度多模态分布的定性度量中,TDE表现优于CV,且速度更快,无需参数,仅需采样数据和内核选择(支持高斯、Epanechnikov和直方图)。
拓扑密度估计与相关评估的MATLAB开发脚本
相关推荐
使用核密度估计绘制散点图
这个功能利用核平滑函数计算每个点的概率密度估计(PDE),并且用颜色表示每个点。输入x表示X轴上的位置,y表示Y轴上的位置。varargin可用于向scatter函数发送一组指令,支持MarkerSize参数,不支持MarkerColor参数。输出h返回创建的散点对象的句柄。例如,生成数据x = normrnd(10, 1, 1000, 1); y = x * 3 + normrnd(10, 1, 1000, 1); 使用scatter_kde(x, y, '填充', 'MarkerSize', 100); 添加颜色栏cb = colorbar(); cb.Label.String = '概率密度估计'。
Matlab
0
2024-08-13
基于神经信号的功率谱密度估计
介绍了一种基于神经信号进行功率谱密度估计的方法。该方法接收神经信号向量作为输入,并输出相应的功率谱密度值,为神经信号分析提供了有效的频域特征。
算法与数据结构
3
2024-05-29
基于Parzen窗的概率密度估计方法
在此研究中,我们使用高斯窗和方窗两种方法,对给定的男女生身高体重分布进行概率密度估计。同时,我们设计了基于贝叶斯最小错误率的分类器,用于有效地对测试样本进行性别分类。
Matlab
0
2024-09-30
一维数据的高效核密度估计器Kernel Density Estimator MATLAB开发
这个实现是一个可靠且极快的一维数据核密度估计器,假设采用高斯核并自动选择带宽。与其他许多实现不同,它不受多模态密度的影响,这种估计不会因数据中存在广泛分离模式而恶化。输入数据为构建密度估计的数据向量,网格点数间隔为2的幂,如果不是2的幂则向上取整为2的下一个幂。默认网格点数为2^12。区间[MIN, MAX]由数据的最小值和最大值确定。输出为自动选择的带宽。
Matlab
1
2024-07-22
估计自相关函数MATLAB中的自相关函数估计方法
给定信号向量“y”,计算其自相关函数的估计值。此方法从延迟1开始,直至延迟$p$,适用于实数或复数信号向量。
Matlab
0
2024-08-25
计算数据集经验概率密度函数估计的MATLAB开发
在过去几十年中,从统计过程中获得的一些经验数据的价值有所不同。现在需要估计这些数据的概率密度函数(PDF),这需要在对数刻度上等分这些值。这一过程简单而高效,适用于处理数百万个数据点。
Matlab
2
2024-07-17
MATLAB开发MO-OFDM信道估计脚本详解
MATLAB开发:MO-OFDM信道估计脚本详解。这是一个专为MIMO-OFDM信道估计设计的MATLAB脚本,支持多输入多输出系统下的信道状态估计。
Matlab
0
2024-08-18
用户范围估计与MATLAB开发
这份文件专为估计用户传播提供MATLAB开发支持。
Matlab
0
2024-08-28
估计隐藏过程的密度、回归或方差函数的非参数估计
EstimHidden是一个专门用于非参数估计的包,适用于以下情况:1. 在观察到Z=X+noise1的卷积模型中估计X的密度;2. 在“变量误差”模型中估计函数b(漂移)和s^2(波动率),其中Z和Y遵循观察模型Z=X+noise1和Y=b(X)+s(X)noise2;3. 在随机波动率模型中估计函数b(漂移)和s^2(波动率),其中Z遵循观察模型Z=X+noise1,并且X_{i+1} = b(X_i) + s(X_i)noise2。对于噪声1的密度,我们考虑高斯('正常')、拉普拉斯('symexp')和log(Chi2)('logchi2')三种情况。
Matlab
0
2024-09-22