本论文提出一种基于DBSCAN算法的营运车辆超速点聚类分析方法,通过挖掘车载GPS监控数据,发现超速多发路段。
基于DBSCAN算法的营运车辆超速点聚类分析
相关推荐
基于时间序列的聚类分析算法实现
该资源提供基于时间序列的聚类分析算法实现,适用于股票时间序列等数据分析,资源代码库:clustering-algorithms-master
算法与数据结构
4
2024-05-24
聚类分析算法
该PPT简要介绍C均值聚类方法的原理和步骤,适合对C均值有初步了解的人员。若要深入学习,推荐参考谢中华老师的《MATLAB统计分析与应用》。
统计分析
4
2024-04-29
基于DBSCAN算法的数据聚类技术
利用JAVA语言设计的面向对象的基于DBSCAN算法的数据分类技术,充分发挥其在数据处理中的优势和效果。
数据挖掘
2
2024-07-13
基于K-means算法的负荷数据曲线聚类分析
该方法应用于负荷数据曲线分析,能够对输入的曲线数据进行聚类分析,并输出分类结果和可视化图表。其主要过程包括数据均一化、曲线平滑、特殊值处理、利用DB值评价聚类结果以及自动选择最佳聚类数等,能够有效地处理曲线数据并实现精准分类。
算法与数据结构
2
2024-05-23
基于模糊C均值算法的数据聚类分析及Matlab实现
详细阐述了模糊C均值(FCM)聚类算法的理论和实施步骤,并使用Matlab演示了FCM在数据挖掘中的应用。
数据挖掘
3
2024-07-17
DBSCAN算法示例解析
以点P1(1,2)为起点,其Eps邻域包含{P1,P2,P3,P13},P1作为核心点,其邻域内的点构成簇1的一部分。 对P2、P3、P13的Eps邻域进行检查和扩展,将P4纳入簇1。
检查点P5,其Eps邻域包含{P5,P6,P7,P8},P5作为核心点,其邻域内的点构成簇2。 对P6、P7、P8的Eps邻域进行检查,发现它们均为核心点,无法进一步扩展。
点P9的Eps邻域仅包含{P9},因此P9被判定为噪声点或边界点。
点P10的Eps邻域包含{P10,P11},P10被判定为噪声点或边界点。 而P11的Eps邻域包含{P10,P11,P12},P11作为核心点,其邻域内的点构成簇3。进一步检查发现,P10和P12均为边界点。
算法与数据结构
4
2024-05-14
探索数据奥秘:聚类分析算法
聚类分析算法是数据挖掘领域中的一大利器,它能够将数据集中相似的数据点归类到一起,形成不同的簇。
想象一下,你拥有大量的客户数据,通过聚类分析,你可以将客户分成不同的群体,例如高消费群体、潜在客户群体等等。这种分类方法可以帮助企业更好地理解客户需求,制定更有针对性的营销策略。
聚类分析算法种类繁多,例如 K-Means 算法、DBSCAN 算法等等,每种算法都有其独特的优势和适用场景。选择合适的算法取决于数据的特点和分析目标。
数据挖掘
4
2024-05-15
isodata聚类分析算法matlab代码
isodata聚类分析算法matlab代码
Matlab
0
2024-08-27
凝聚聚类分析算法详解
凝聚聚类基本算法
计算相似度矩阵:将每个数据点视为一个簇。
重复:合并两个最接近的簇。
更新相似度矩阵。
直到仅剩一个簇为止。
关键操作是计算两个簇的相关性,不同的算法有不同的距离定义。
数据挖掘
0
2024-11-01