在大数据领域,有效的工程实践至关重要。
优化的大数据工程实践方案
相关推荐
MyBatis逆向工程优化方案
MyBatis逆向工程是一种能够连接数据库并生成POJO、Mapper XML和Mapper接口的工具。该工具通过简化数据库操作,提高了开发效率,适用于需要快速生成数据库映射文件的项目。使用MyBatis逆向工程,开发者可以轻松地生成与数据库表对应的Java对象和映射文件,从而加速项目开发过程。
MySQL
2
2024-07-26
MySQL SQL大数据优化方案
在处理大规模数据时,数据库性能的优化尤为重要。MySQL是一种广泛使用的开源关系型数据库管理系统,对于处理百万级数据量的表,优化策略至关重要。以下是一些关键的优化技巧:1. 创建索引:索引能显著提升查询速度,特别是在WHERE和ORDER BY子句中涉及的列。避免全表扫描,应在经常用于筛选和排序的字段上建立索引。2. 避免NULL判断:NULL值判断可能导致索引失效。若可能,为字段设置默认值(如0)以避免NULL,并调整查询语句。3. 避免!=或<>:这些操作符可能导致全表扫描,应使用NOT和=替代。4. 避免OR连接条件:使用UNION ALL分开多个查询以保持索引利用率。5. 谨慎使用IN和NOT IN:对于大范围的IN查询,考虑转换为JOIN或EXISTS。6. 避免模糊查询%:考虑使用全文索引以避免全表扫描。7. 避免在WHERE子句中使用参数:如可能,使用索引提示WITH(INDEX(索引名))强制使用索引。8. 避免表达式操作:不要在WHERE子句中对字段做除法等运算,而是提前计算运算结果。9. 避免函数操作:如SUBSTRING和DATEDIFF,这些可能导致索引无效,应改用更合适的查询结构。10. 避免在索引左侧进行函数运算:确保索引字段直接与比较操作符结合。11. 复合索引使用:按照最常使用的筛选条件顺序构建复合索引以提高效率。12. 避免无意义的查询:如创建空表结构,直接使用CREATE TABLE更高效。13. 使用EXISTS替换IN
MySQL
0
2024-09-29
工业大数据管理技术架构优化-县市级智慧工程实施方案
工业大数据管理技术架构的功能分为四部分:数据采集与交换、数据预处理与存储、数据工程与数据建模。数据采集与交换层通过PLC、SCADA、DCS等系统实时采集机器设备数据,并通过数据交换接口获取物联网数据。该层还支持业务系统的结构化与非结构化数据采集,以及数据交换与互联网数据爬取。
算法与数据结构
3
2024-07-16
大数据分析项目优化方案
大数据分析项目利用多样化技术栈,对各行业数据集进行深入分析,实现业务指标的全面理解。项目主要采用Python、SQL、HQL等编程语言,结合Jupyter Notebook进行数据处理、可视化及代码示例展示。
数据挖掘
2
2024-07-18
工业大数据的创新意义-县市级雪亮工程整体规划方案
工业大数据作为人类首次创造的生产资料,自工业现代化进程以来一直伴随着发展,并逐步走向智能化阶段。数据始终影响着人类工业化进程,高质量科学管理是现代工业化进程的基础。从工程设计语言的诞生到现代工业的定量化和标准化,再到数字计算机的应用开启了工业3.0时代。数据的发展历程显示,数据由简单的数值发展演变而来,具有精确性和实用性特征。计算方法与信息技术的发展使得数据在工业中的作用日益凸显。
算法与数据结构
3
2024-07-16
多方案组合优化破解Spark数据倾斜的高效实践
解决方案八:多种方案组合使用
在实践中发现,很多情况下,若处理较为简单的数据倾斜场景,使用上述某一种解决方案即可应对。但面对复杂的数据倾斜问题时,单一方案可能不够,需要多种方案组合使用。
优化思路
预处理与过滤
首先应用解决方案一和二,对数据进行预处理和部分过滤,缓解倾斜程度。
提升shuffle并行度
对某些shuffle操作进行优化,增加并行度以提高性能。
针对性优化聚合和join
针对不同类型的聚合或join操作,选择合适的方案进行调整和优化。
灵活应用
理解这些解决方案的思路和原理,并根据实际情况灵活组合应用,是解决数据倾斜问题的关键。通过在不同环节选用合适的优化方案,可以更高效地处理复杂的数据倾斜问题。
spark
0
2024-10-31
大数据工程师的核心技能要求
作为一名大数据工程师,必须掌握包括Hadoop和SPSS在内的关键技能体系。
Hadoop
2
2024-07-16
2017 大数据工程师指南
流式计算
日志收集
编程语言
数据分析挖掘
数据搜索/可视化
机器学习
算法
云计算
大数据通用处理平台
分布式协调
分布式存储
存储格式
数据库
资源调度
工作流调度
机器学习工具
数据安全
部署工具
数据分析/数据仓库(SQL 类)
消息队列
算法与数据结构
3
2024-05-13
大数据工程师技能树
大数据工程师技能树
想要成为一名合格的大数据工程师,需要掌握哪些技能呢?以下技能树为您提供方向:
基础技能:
编程语言:Java, Python, Scala
数据结构与算法
Linux 操作系统
数据库原理
大数据框架:
Hadoop 生态系统:HDFS, MapReduce, YARN, Hive, Pig
Spark 生态系统:Spark Core, Spark SQL, Spark Streaming
NoSQL 数据库:HBase, Cassandra, MongoDB
消息队列:Kafka, RabbitMQ
数据处理与分析:
数据清洗与预处理
数据建模与分析
数据可视化
机器学习算法
其他技能:
云计算平台:AWS, Azure, GCP
数据安全与隐私
团队协作与沟通
掌握以上技能,您将具备构建和维护大数据平台的能力,并能够从海量数据中提取有价值的信息,为企业决策提供数据支持。
统计分析
3
2024-05-15