Gerardus 是由英国牛津大学生物医学工程研究所的 Vicente Grau 教授团队开发的 Matlab 工具箱、bash 脚本和 C++ 程序的集合。该项目起始于 2009 年 1 月,最初是 Ramón Casero 博士用于管理其研究软件的个人项目。2014 年 10 月起,Gerardus 逐渐发展成为一个团队项目,多位博士后和学生参与其中。2015 年 4 月,项目迁移至 GitHub 托管。Gerardus 主要应用于医学成像和计算生物学领域的研究。
Gerardus:医学影像与计算生物学研究工具集
相关推荐
生物学Python编程指南
Python在包括Microsoft Windows、Mac OS X、Linux和UNIX在内的常用计算机操作系统上都可以使用。在Windows上,您通常需要下载和安装Python,因为它不是标准配置。在大多数新的Mac OS X、Linux和UNIX系统中,Python已经作为标准配置包含(实际上,一些Linux操作系统的部分是用Python编写的),尽管您应该检查您所拥有的Python版本:在命令行输入'python'可查看版本。您可以在本书末尾的参考部分或剑桥大学出版社网站:http://www.cambridge.org/pythonforbiology 查看Python在各种平台上的下载网址列表。由于Python适用于和可以在许多不同的计算机平台上运行,您编写的任何程序通常都能在所有计算机系统上运行。但是,有一些重要的注意事项您应该了解。尽管Python是一种
算法与数据结构
0
2024-08-29
医学影像处理中的图像编码与配准技术
本资源探讨了医学影像处理中的图像编码、旋转和配准技术,提供了相关程序和素材资源。
Matlab
1
2024-07-19
Matlab神经影像.nii到.png格式转换器轻量级工具为医学影像和计算机视觉研究者设计
医学影像和计算机视觉研究人员,这款神经影像.nii到.png格式转换器是您的理想选择。只需将脚本添加到路径中,输入命令' nii2png ',选择工作目录和您的NIfTI图像,即可快速转换。您还可以选择旋转图像,处理后的png文件将保存在工作目录的png文件夹中。
Matlab
1
2024-07-20
基于Kronecker积的系统生物学建模工具箱:KroneckerBio
KroneckerBio:基于Kronecker积的系统生物学建模工具箱
KroneckerBio是一个MATLAB工具箱,用于使用Kronecker积构建和分析系统生物学模型。它提供了用于模型构造、仿真和分析的函数和工具。KroneckerBio可用于构建各种生物学模型,包括基因调控网络、代谢途径和信号通路。该工具箱具有以下特点:
模型构造: KroneckerBio提供了一组函数来构造Kronecker积模型,包括创建张量、构建网络和定义动力学方程。
仿真: 该工具箱包含各种仿真方法,例如直接积分、事件驱动的仿真和蒙特卡罗仿真。
分析: KroneckerBio提供了分析模型行为的工具,包括稳态分析、灵敏度分析和稳定性分析。
KroneckerBio是一个功能强大的工具,可用于构建和分析复杂的系统生物学模型。它易于使用,并提供了一系列用于模型开发和分析的函数和工具。
Matlab
2
2024-05-30
互联网程序员的每日挑战生物信息学和计算生物学的资源评审
互联网程序员每天都在审查来自网络的生物信息学和计算生物学评论和资源。这些资源涵盖数据的收集、分析、解释、展示和组织,包括特拉华大学“生物数据分析”课程的在线笔记集,以及各种与统计、数据分析、机器学习相关的学习材料和文章。
统计分析
0
2024-08-31
libfnl: 用于分子生物学数据挖掘的 Python 3 工具
libfnl :trade_mark: 是一个 API 和 CLI,它提供了一组易于使用的工具来促进数据和文本挖掘。该库仅适用于 Python 3,特别适合挖掘生物医学/科学文本,但也可用于其他情况。它是基因名称存储库守护程序、PubMed 镜像工具集合和文档存储库的补充部分。
该库包含以下软件包:
fnl.nlp: 用于分析文本的工具(标记化、PoS 标记、短语组块、实体检测);用于对句子进行分段并将文本映射到字典条目的模块,包括 的 Python 包装器、 的 Python 包装器以及语料库的处理程序;此外,通过 的包装器,最大熵分类器也可用。
fnl.stat: 评估评分者间 Kappa 得分的模块和开发基于文本分类器的模块
fnl.text: 包装器以处理文本数据(字符串、标记、句段、注释等)
数据挖掘
2
2024-05-20
MATLAB中《国际时序生物学》的gn算法代码应用
《国际时序生物学》中MATLAB的gn算法代码,用于自适应陷波滤波器和昼夜相移估计的参数调整过程。包括五个Simulink文件:ANF_1st.mdl至ANF_5th.mdl,分别运行1阶至5阶的自适应陷波滤波器。MATLAB代码Adaptive_notch_filter.m实现1阶至5阶ANF的估计值和昼夜节律相位比较。此外,Evolutionary_Strategy_ANF_mutation.m文件通过进化策略优化ANF参数。
Matlab
0
2024-08-04
YOLO算法在古生物学研究中的创新应用化石识别与分类的自动化
古生物学是探索地球历史上生命及其进化的科学。随着科技的进步,特别是YOLO(You Only Look Once)算法的引入,古生物学界开始采用自动化化石识别与分类系统。深入探讨了YOLO算法在古生物学中的多重应用,涵盖了化石图像的智能识别和自动分类技术,以及其在古生物多样性研究中的潜力。YOLO算法的应用不仅提升了化石研究的效率和准确性,还为古生物学领域带来了全新的探索可能性。
算法与数据结构
0
2024-09-13
海量生物医学数据:机遇与挑战并存
海量生物医学数据的双刃剑
近年来,包含海量患者电子健康记录和基因组数据的生物医学数据库如雨后春笋般涌现,为加速科学发现和革新医疗手段带来了前所未有的机遇。然而,这些“大数据”是否就等同于“好数据”呢?在为研究和应用欢呼雀跃的同时,我们也必须保持清醒的头脑,认识到其潜在的陷阱和挑战。
数据质量的隐忧
首先,数据库中的数据可能存在错误或缺失。信息采集过程中的疏漏、人为录入错误,以及数据整合过程中的技术问题,都可能导致数据的不准确性。
系统性偏见的影响
其次,数据本身的性质和研究人员的主观倾向都可能引入系统性偏见,影响研究结果的有效性,尤其是在探究因果关系时。例如,特定人群在数据库中的代表性不足可能导致研究结论无法推广到更广泛的群体。
数据误用与操纵
最后,海量数据的挖掘也为别有用心之人提供了可乘之机,他们可能利用表面上看似科学的研究结果来误导公众,操纵舆论,从而达到其政治、社会或经济目的。
应对之道
面对海量生物医学数据带来的机遇与挑战,我们需要多管齐下,采取技术、方法和教育等方面的干预措施,防范数据误用和滥用:
技术手段: 开发数据清洗和验证工具,提高数据质量;
方法改进: 采用更加严谨的研究方法,控制偏见的影响;
教育普及: 提升公众对数据分析的认知水平,增强辨别能力。
只有认清海量生物医学数据的双面性,并采取有效的应对措施,才能真正发挥其潜力,造福人类健康。
数据挖掘
5
2024-04-29