粒子群优化算法(PSO)是一种全局优化算法,模拟鸟群或鱼群集体行为,由Eberhart和Kennedy于1995年提出。该算法利用群体智能,粒子在搜索空间中移动并更新速度和位置,以寻找最优解。在MATLAB中,PSO常用于解决多维度复杂问题的优化。粒子群算法的基本原理包括粒子、位置、速度、个人最佳(pBest)、全局最佳(gBest),迭代过程中通过更新速度和位置优化目标函数。MATLAB提供了内置的pso函数和自定义PSO函数,用户可根据具体问题调整算法参数如惯性权重w、学习因子c1和c2,以及种群规模、速度边界等参数。该算法在信号处理中用于滤波、降噪等应用。