《Mining of Massive Datasets》是一部经典的数据挖掘教材,深入探讨了如何处理和分析大规模数据集的技术与方法。该书内容清晰易懂,适合广泛读者群体。
大数据集挖掘经典教材的探索与应用
相关推荐
数据挖掘入门经典教材
数据挖掘算法详解,助力您掌握数据挖掘基础知识。
数据挖掘
3
2024-05-25
数据仓库与数据挖掘:经典教材
数据仓库与数据挖掘技术,权威参考,助力数据分析与决策。
数据挖掘
5
2024-04-30
数据挖掘技术详解(经典教材)
这本经典教材详细阐述了数据挖掘的概念、原理和技术,透彻分析了数据挖掘在实际应用中的关键作用。
数据挖掘
1
2024-07-17
经典数据挖掘原理教材概述
从最基础的概念开始,这本经典的数据挖掘原理教材深入探讨了数据挖掘的核心概念和方法。
数据挖掘
2
2024-07-18
哈工大数据挖掘教材
哈工大优质数据挖掘课件,助你学习探索数据世界。
数据挖掘
4
2024-05-13
经典数据挖掘算法探索
数据挖掘领域中,一些经典算法一直以来都在发挥重要作用。这些算法不仅帮助分析大数据,还能揭示隐藏在数据背后的有价值信息。
数据挖掘
4
2024-07-16
大数据集挖掘.pdf
这本书是由安纳德·拉贾拉曼和杰夫·乌尔曼多年来在斯坦福大学开设的一门为期一个季度的课程的教材演变而来。这门名为“网络挖掘”的课程CS345A原本是设计为高级研究生课程,但现在也对高年级本科生开放并且颇具吸引力。随着尤尔·莱斯科维奇加入斯坦福大学教职,我们对材料进行了大幅重新组织。他引入了一门新的课程CS224W,专注于网络分析,并且在CS345A中添加了新的内容,该课程已经更名为CS246。三位作者还推出了一门大规模数据挖掘项目课程CS341。本书现在包含了这三门课程中教授的内容。
算法与数据结构
1
2024-07-25
大数据集的挖掘——数据挖掘新视角
互联网和电子商务的普及带来了大量的数据集,这些数据成为数据挖掘的宝贵资源。本书侧重于解决数据挖掘中关键问题的实用算法,即使是处理最大数据集也能游刃有余。首先讨论了Map-Reduce框架,这是自动并行化算法的重要工具。作者详解了局部敏感哈希和流处理算法的技巧,用于处理数据量过大而无法进行详尽处理的情况。接着介绍了PageRank算法及其在组织网络信息中的应用技巧。其他章节涵盖了发现频繁项集和聚类的问题。最后几章分别讨论了推荐系统和网络广告的应用,这两者在电子商务中至关重要。本书由数据库和网络技术领域的两位权威专家撰写,无论对学生还是从业者都是必读之作。
算法与数据结构
1
2024-07-15
掌握数据挖掘:探索入门经典
深入浅出,数据挖掘的必备指南,引领你步入数据科学的殿堂,开启知识探索之旅。
数据挖掘
2
2024-05-25