1. 在数据仓库与数据挖掘中,选择合适的聚类块数k是至关重要的步骤。2. 从训练集中随机选取k个向量作为初始聚类中心。3. 根据欧氏距离将每个样本向量归入距离最近的聚类中心。4. 根据新的聚类分配重新计算聚类中心,直至收敛。5. 当聚类中心不再变化时,算法终止。6. 这一过程的关键算法是K均值算法。