针对煤矿安全生产管理监测所得数据存在的大数据量和难以及时发现安全因素关联问题,本研究基于CPARA技术进行关联规则分析,以探索其在煤矿安全评价中的应用潜力。
CPARA技术在煤矿安全评价中的关联规则应用研究
相关推荐
关联规则挖掘在煤矿安全监测中的应用_2011
为了从大量的煤矿安全监测数据中获取有用的知识,来指导煤矿安全预警工作,将关联规则挖掘算法应用于安全监测数据的数据挖掘。根据数据的特点,对数据进行了预处理后,采用了多维关联规则挖掘算法。文章设计并实现了安全监测数据的关联规则挖掘系统。通过该系统,用户在设置最小支持度和最小置信度阈值后,就可以挖掘出关联规则。
数据挖掘
6
2024-11-06
数据挖掘中关联规则应用
透视数据模式和相关性
预测消费者行为
制定有针对性的营销策略
识别潜在的交叉销售和追加销售机会
改善库存管理和供应链优化
数据挖掘
11
2024-05-25
煤矿安全管理中的行为安全理论应用
采用行为观察、ABC行为分析、行为纠正等手段,实施行为安全理念。分析煤矿事故,提出加强安全教育培训、注重行为观察和信息反馈、健全考核体系、完善激励机制、营造安全文化等安全管理对策。
统计分析
13
2024-05-12
煤矿安全监控系统自我检测技术研究
为确保煤矿安全监控系统监控效果可靠,根据相关规定建立了合规性评估体系,包括设备安装、配置、系统运行维护、异常统计分析和平台运行组件等标准。基于开源GIS技术实现了矿井巷道布局的矢量化,结合实时监测数据,制定了各项评估方法。研发了煤矿安全监控系统自我检测系统,并成功应用于煤矿实地,有效支持系统异常的自动识别。
统计分析
12
2024-08-27
计算机取证分析中的关联规则应用
关联规则技术能发现不同犯罪之间的相似性,以及犯罪人之间的关联,在计算机取证分析中应用该技术可挖掘潜在关联。
数据挖掘
8
2024-05-15
Kafka在大数据技术中的应用研究
摘要
Kafka作为一款高吞吐量、低延迟的分布式消息队列系统,在大数据领域应用广泛。将探讨Kafka的核心概念、架构设计以及其在大数据技术栈中的应用场景,并结合实际案例分析Kafka如何助力构建实时数据管道和处理海量数据流。
1. Kafka概述
消息队列的基本概念
Kafka的关键特性:高吞吐、低延迟、持久化、高可用等
Kafka的核心组件:生产者、消费者、主题、分区、代理等
2. Kafka架构与原理
Kafka集群架构及工作流程
数据存储与复制机制
消息传递语义和保证
Kafka的性能优化策略
3. Kafka应用场景
实时数据管道构建:日志收集、数据同步、事件驱动架构等
海量
kafka
12
2024-06-17
Hive在大数据技术中的应用研究
深入探讨了 Hive 在大数据技术栈中的角色和应用。从 Hive 的架构设计、核心功能、应用场景等多个维度展开论述,分析了其在数据仓库、数据分析、ETL 处理等方面的优势和局限性。同时,结合实际案例,阐述了 Hive 如何与其他大数据组件协同工作,构建高效、可扩展的数据处理平台。
Hive 架构与核心功能
Hive 构建于 Hadoop 之上,其架构主要包括以下几个部分:
用户接口: 提供 CLI、JDBC、ODBC 等多种方式与 Hive 交互。
元数据存储: 存储 Hive 表的定义、数据存储位置等元数据信息。
解释器: 将 HiveQL 查询语句转换为可执行的 MapReduce 任务
Hive
8
2024-06-25
Kafka在大数据技术中的应用研究
摘要
深入探讨了Kafka在大数据技术栈中的应用。从Kafka的基本架构和工作原理出发,分析了其高吞吐量、低延迟和可扩展性的技术优势。文章进一步阐述了Kafka在数据采集、实时数据处理、日志收集和事件驱动架构等典型场景下的应用案例,并对未来发展趋势进行了展望。
关键词:Kafka,大数据,消息队列,实时数据处理,分布式系统
一、引言
随着互联网和物联网的快速发展,全球数据量呈现爆炸式增长,大数据技术应运而生。在海量数据的冲击下,如何高效地采集、存储、处理和分析数据成为企业和组织面临的巨大挑战。Kafka作为一款高性能的分布式消息队列系统,凭借其优异的性能和可靠性,在大数据领域得到了广泛应用。
kafka
9
2024-07-01
数据挖掘与数据库优化在煤矿安全监管中的应用
阐述数据挖掘与数据库优化技术的应用原理,具体探讨其在煤矿安全监管系统中的运用。建立了基于这两项技术的矿井运行状态监控方案,取得了显著成效。
数据挖掘
18
2024-04-30