本教程详尽介绍了数据挖掘领域的多个专业知识,涵盖广泛,适合深入学习。
数据挖掘算法与数学应用教程
相关推荐
数据挖掘技术算法与应用探析
数据挖掘技术算法与应用探析
数据挖掘作为一种强大的决策支持手段,在众多领域展现出巨大的应用价值。本报告聚焦于关联规则挖掘技术,沿着数据挖掘的流程展开论述。
首先,报告阐述了数据仓库的构建及其在数据挖掘中的重要作用。接着,深入探讨了关联规则挖掘的核心概念、原理以及常用方法,并对最新研究成果进行分析和展望。最后,报告还关注了数据挖掘结果的可视化呈现,以提升结果的可解释性和实用性。
目录
第一章 数据仓库
1.1 概论1.2 数据仓库体系结构1.3 数据仓库规划、设计与开发1.3.1 确定范围1.3.2 环境评估1.3.3 分析1.3.4 设计1.3.5 开发1.3.5 测试1.3.6 运行1.4 小结
...
数据挖掘
2
2024-05-25
优化数学建模算法的应用与实践
数学建模算法在各个领域中展现出了广泛的应用和实际价值,随着技术的不断进步和创新,这些算法正在成为解决实际问题的有效工具。
算法与数据结构
3
2024-07-16
数学建模与算法
数学建模涵盖四大问题类型:分类、优化、评价和预测。 运用数学模型解决实际问题,首先需要根据具体问题构建模型,然后求解模型,最后将结果应用于实际问题。 算法在这一过程中扮演着至关重要的角色。
算法与数据结构
7
2024-05-12
数据挖掘:算法与应用(第3版)
本书作为数据挖掘领域的经典教材,深入浅出地阐述了数据挖掘的核心算法和理论基础,为读者构建完整的知识体系,是学习和应用数据挖掘技术的 valuable 资源。
算法与数据结构
2
2024-07-01
层次聚类算法: 数据挖掘技术与应用
层次聚类算法无须预先设置参数,但需终止条件。
聚合式 (AGNES) 和分裂式 (DIANA) 算法属于层次聚类算法。
Hadoop
7
2024-04-30
数据挖掘算法与应用读书报告
概述数据挖掘及数据仓库
关联规则挖掘
数据挖掘结果可视化
最新挖掘方法分析与提高
数据挖掘
6
2024-04-30
数据挖掘技术Apriori算法的应用与实现
数据挖掘是计算机科学领域中重要的分支,通过分析海量数据找出有价值的模式,为决策提供支持。Apriori算法是关联规则学习的经典算法之一,在市场篮子分析等领域有广泛应用。深入探讨了Apriori算法的原理和实现,结合\"apriori ALEX.zip\"中的文件展示了其在实际操作中的应用。算法主要围绕\"频繁项集\"和\"关联规则\"展开,通过识别数据库中频繁出现的项集及其子集,从而进行相关推断和分析。\"apriori ALEX.zip\"压缩包中的文件包括\"main.c\"、\"apriori.cbp\"、\"main.exe\"等,这些文件协同工作以实现Apriori算法的各个步骤。整个实现过程包括生成初始频繁项集、候选项集的生成、算法的迭代和停止条件的判断。
数据挖掘
0
2024-10-18
算法与数学基础III
矩阵计算的重要性与应用在多元统计分析和数学分析中的关键角色逐步显现。本书详尽讲述了矩阵计算、普林斯顿微积分、哈代数论等核心数学概念,帮助读者深入理解算法与数学的基础。
统计分析
0
2024-08-15
端到端数学建模与数据挖掘
苏剑林编著《端到端数学建模与数据挖掘》
数据挖掘
4
2024-05-25