统计学习是计算机及其应用领域的一门重要学科,本书详尽地介绍了监督学习的各种方法,涵盖了感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、em算法、隐马尔可夫模型和条件随机场等。每章以具体问题或实例为切入点,由浅入深地阐述思路,并提供必要的数学推导,帮助读者掌握统计学习方法的核心,从而掌握其应用。此外,书中还包括相关研究概述和少量习题,列出了主要参考文献,以满足读者进一步学习的需求。