这款应用程序利用计算机视觉点追踪技术来量化吲哚菁绿在荧光血管造影过程中发出的近红外信号(ICG)。它已经应用于研究结直肠癌,例如Jeffrey Dalli等人在爱尔兰都柏林的研究,详细记录了使用全身吲哚菁绿和近红外内窥镜进行的数字动态区分。用户可以在GitHub上查看该应用程序的用户指南,包括安装说明。
荧光血管造影中的荧光追踪工具基于计算机视觉的近红外信号量化应用程序
相关推荐
【医疗技术】基于计算机视觉的视网膜血管检测及Matlab代码
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划以及无人机等多个领域的Matlab仿真应用,使得视网膜血管检测技术更加精准和高效。
Matlab
0
2024-09-01
计算机视觉技术在图像处理与识别中的应用
1.图像处理概述2.MATLAB编程基础3.图像预处理技术4.图像分割方法5.图像修复与校正技术6.图像特征提取方法7.图像识别技术8.图像数据压缩与编码技术9.实际应用案例
Matlab
0
2024-08-13
基于颜色的计算机视觉Matlab开发指南
步骤 1: 准备环境
确保已安装 Matlab 和相应的图像处理工具箱。
步骤 2: 读取图像
使用 imread 函数加载待处理的图像。
img = imread('your_image.jpg');
步骤 3: 转换颜色空间
将图像转换为 HSV 或 LAB 颜色空间以便于颜色分析。
hsv_img = rgb2hsv(img);
步骤 4: 颜色提取
定义需要提取的颜色范围,并使用逻辑索引创建掩模。
mask = (hsv_img(:,:,1) > lower_bound) & (hsv_img(:,:,1) < upper>
步骤 5: 应用掩模
将掩模应用于原图像,以提取所需颜色区域。
result = img .* uint8(mask);
步骤 6: 显示结果
使用 imshow 函数显示处理后的图像。
imshow(result);
Matlab
0
2024-11-04
计算机视觉技术在可视化数据挖掘中的应用
赵星总结了近年来国际上涌现的几类可视化数据挖掘技术,提出了将计算机视觉技术应用于该领域的建议。
数据挖掘
2
2024-07-17
探索计算机视觉:图像背后的故事
计算机视觉:解读图像奥秘
2020年,数字图像的数量爆炸式增长。图像无处不在,推动着我们去了解计算机视觉。
什么是计算机视觉?
它是人工智能的一个分支,致力于训练计算机理解和解释视觉世界。通过编写程序,让计算机“看懂”图像内容,识别物体、场景和人脸等。
人类视觉与计算机视觉
尽管两者都能处理视觉信息,但人类视觉更为高效。人脑能迅速识别物体,而计算机需要逐像素分析。
图像处理与计算机视觉
图像处理是对图像进行变换,例如调整颜色或大小。计算机视觉则利用图像处理算法解决更复杂的任务,例如物体识别。
深度学习与计算机视觉
深度学习推动了计算机视觉的发展,神经网络方法在解决图像识别等任务上取得显著成果。
计算机视觉的挑战与机遇
尽管取得了进步,计算机视觉仍面临挑战。深度学习方法需要大量数据,且在处理复杂场景时可能遇到困难。然而,随着技术的不断发展,计算机视觉将在更多领域发挥重要作用。
Matlab
4
2024-04-29
计算机视觉课程作业.zip
利用k-means算法对图像进行色彩和纹理分割,内含详尽实验报告和Matlab代码,撰写过程历时10天,深入分析每一步。
Matlab
0
2024-09-22
计算机视觉中的Matlab开发学生竞赛运动估计
计算机视觉领域中,使用Matlab进行开发,专注于学生竞赛运动估计。本章节探讨了学生竞赛队如何通过计算机视觉训练来提升其技能。
Matlab
0
2024-09-20
基于计算机视觉的魔方求解器:从图像到解法
这个程序可以通过两种方式运行来求解魔方:
自动打乱模式
拍摄六张魔方图像,每面一张,并按照以下约定命名:
黄脸:Img1.jpg
橙脸:Img2.jpg
蓝脸:Img3.jpg
红脸:Img4.jpg
绿脸:Img5.jpg
白脸:img6.jpg
为了获得最佳检测效果,图像应该非常靠近立方体,尽量减少背景干扰,并确保光线充足。2. 将包含这些图像的文件夹存储在 Detector/Images 下。3. 打开 Detector/CVRubiksCube.m 文件,将第 2 行的 “ExampleSet” 更改为你的文件夹名称。
手动打乱模式
将您自己的打乱算法输入到求解器程序中。
Matlab
2
2024-05-25
使用Python进行计算机视觉的深度学习
Python成为计算机视觉深度学习的首选工具,其灵活性和强大的生态系统使其在视觉数据处理中表现卓越。
MySQL
1
2024-07-22