展示未精炼规则和模型。
未精炼规则与模型汇总
相关推荐
知识背景序列模型与关联规则对比
知识背景:序列模型 VS 关联规则
序列模型 = 关联规则 + 时间(空间)维度
关联规则: 微软股票下跌 50%,IBM 股票下跌将近 4%。
序列模式: 微软股票下跌 50%,IBM 股票也会在 3 天之内下跌将近 4%。
数据挖掘
4
2024-05-28
序列规则节点结果解读:汇总页签
“汇总” 页签以表格形式清晰展示了 Clementine 序列规则挖掘的结果。每一行代表一个被发现的规则,并包含以下关键信息:
规则:具体描述了数据序列中的模式,例如“购买产品 A,然后购买产品 B”。
支持度:表示该规则在所有数据序列中出现的频率,体现了规则的普遍性。
置信度:衡量规则预测准确性的指标,表示在包含前项序列的情况下,出现后项序列的概率。
提升度:评估规则实际效用的指标,反映了相比随机情况下,该规则对预测结果的提升程度。
通过分析这些指标,用户可以快速识别出高价值的序列模式,例如哪些产品组合经常被一起购买,从而为市场营销、产品推荐等决策提供数据支持。
数据挖掘
2
2024-05-23
精炼大数据测试思维,助力测试流程与策略指导
通过深入学习与总结,提炼出精炼的大数据测试思维,以指导大数据测试流程与策略。
Hadoop
0
2024-09-19
生成的规则集汇总页签-Clementine应用指南
生成的规则集汇总页签整理了规则集模型生成的结果,以方便进一步分析和使用。
数据挖掘
3
2024-04-30
Snort 入侵检测系统规则泛化模型
摘要:提出一种改进 Snort 入侵检测系统的规则泛化模型,通过聚类和最近邻泛化等方法增强检测能力,提高了入侵行为检测率,实现了新入侵行为的识别。
数据挖掘
4
2024-05-20
常变量与命名规则
变量名称:数字、字母、下划线;首字母为字母;大小写敏感;最多19个字符。
Matlab
3
2024-05-01
基于关联规则的中医辅助诊断模型构建
海量中医电子病历的普及为数据挖掘提供了丰富的数据资源。利用关联规则算法,可以从这些数据中挖掘出年龄、疾病、症状等因素之间的潜在关联,为中医诊断提供辅助决策支持。
数据挖掘
3
2024-05-25
生成规则集模型-数据挖掘原理与SPSS-Clementine应用宝典的应用
生成规则集模型的节点代表了由关联规则建模节点(Apriori or GRI),或生成C5.0节点,或C&RT节点发现的规则,用于预测特定输出字段。未精炼的规则节点生成的规则集节点可以在流中生成预测。用户可通过图标将规则集节点模型加入流中,并通过右键点击流选择节点放置位置。连接数据后,用户可以使用规则集节点模型进行预测,输入数据需与训练数据相同。执行包含规则集节点的流时,该节点将添加两个新字段,存放预测值和置信度。关联规则集的预测字段前缀为$A-,置信字段前缀为$AC-。C5.0规则集的预测字段前缀为$C-,置信字段前缀为$CC-。C&RT规则集的预测字段前缀为$R-,置信度字段前缀为$RC-。
数据挖掘
0
2024-09-13
SQL技巧与经典语句汇总
对于那些追求SQL最佳实践和技巧的你来说,这篇文章将是一份不可多得的资源。如果你希望了解SQL语句的基础和提升技巧,这里有你需要的内容。请在评论中分享你的经验和见解,让我们一起不断学习和进步。
SQLServer
2
2024-07-23