生成规则集模型的节点代表了由关联规则建模节点(Apriori or GRI),或生成C5.0节点,或C&RT节点发现的规则,用于预测特定输出字段。未精炼的规则节点生成的规则集节点可以在流中生成预测。用户可通过图标将规则集节点模型加入流中,并通过右键点击流选择节点放置位置。连接数据后,用户可以使用规则集节点模型进行预测,输入数据需与训练数据相同。执行包含规则集节点的流时,该节点将添加两个新字段,存放预测值和置信度。关联规则集的预测字段前缀为$A-,置信字段前缀为$AC-。C5.0规则集的预测字段前缀为$C-,置信字段前缀为$CC-。C&RT规则集的预测字段前缀为$R-,置信度字段前缀为$RC-。
生成规则集模型-数据挖掘原理与SPSS-Clementine应用宝典的应用
相关推荐
数据挖掘原理与SPSS-Clementine应用宝典
用户可以从数据流的任何非终端节点中生成用户输入节点。具体步骤包括:(1)确定在流程的哪一点输入节点;(2)右键单击节点并选择“生成用户输入节点(P)”,将节点数据导入用户输入节点;(3)用户输入节点负载了流程下游的所有过程,代替原有节点。生成后,节点从原数据中继承了所有数据结构和字段类型信息(如果可以继承)。
数据挖掘
2
2024-07-18
数据挖掘原理与SPSS-Clementine应用宝典
在这本书中,我们深入探讨了数据挖掘的基础原理,并详细介绍了如何利用SPSS-Clementine软件进行应用。通过本书,读者可以系统地学习数据挖掘技术,掌握SPSS-Clementine的实际操作技能。
数据挖掘
0
2024-10-16
图数据挖掘原理与SPSS-Clementine应用宝典
图20-2以颜色为层次的图和图20-3以大小为层次的图详细介绍了数据挖掘的原理和SPSS-Clementine应用方法。
数据挖掘
1
2024-07-17
数据挖掘原理与SPSS-Clementine应用宝典详解
17.5计算标准t17.5.1交叉验证标准t交叉验证的概念是将样本分成两个子集:一个包含n-m个样本的训练样本集,另一个包含m个样本的验证样本集。第一个样本集用于建模,第二个样本集用于评估预期偏差或估算距离。例如,在具有定量输入的神经网络中,通常使用高斯偏差:(17-30)
数据挖掘
2
2024-07-17
数据挖掘原理与SPSS-Clementine应用宝典详解
C5.0节点成本页签C5.0节点对话框用于显示错误归类损失矩阵,指定不同类型预测错误之间的相对重要性。图21-20展示了错误归类损失的成本对比。损失矩阵显示每一可能预测类和实际类组合的损失情况,允许用户自定义损失值以及改变预测类与实际类组合的损失值。
数据挖掘
0
2024-09-01
数据预处理分类-数据挖掘原理与SPSS-Clementine应用宝典
数据预处理分类:从对不同的源数据进行预处理的功能来分,数据预处理主要包括数据清理、数据集成、数据变换、数据归约等4个基本功能。在实际的数据预处理过程中,这4种功能不一定都用到,而且,它们的使用也没有先后顺序,某一种预处理可能先后要多次进行。
数据挖掘
0
2024-08-08
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
3
2024-07-15
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
3
2024-07-16
数据挖掘原理与SPSS-Clementine应用指南
19.2.4统计汇总图19-21展示了一个汇总节点的实例。汇总节点能够将一系列输入记录转换为综合且总结性的输出记录,具体的汇总对话框如图19-21所示。
数据挖掘
0
2024-08-10