TSPOF_GA固定开放式旅行商问题(TSP)遗传算法(GA)通过设置找到TSP变体的(接近)最优解搜索最短路线的GA(推销员的最短距离)在访问另一个时从固定起点旅行到固定终点城市恰好一次)概括:单个销售员从第一个点开始,到最后一个点结束点,然后前往中间的每个剩余城市,但是没有通过返回他开始的城市来关闭循环。每个城市只被推销员访问一次。注:Fixed Start取第一个XY点,Fixed Start End被认为是最后一个XY点输入:具有零个或多个以下字段的USERCONFIG(结构): - XY (float)是一个Nx2的城市位置矩阵,其中N是城市的数量- DMAT (float)是一个NxN点到点距离/成本矩阵- POPSIZE(标量整数)是人口的大小(应该可以被4整除) - NUMITER(标量整数)是算法运行所
使用遗传算法解决固定端点开放旅行商问题的“开放”变体-matlab开发
相关推荐
MATLAB解决多旅行商问题的遗传算法
介绍了一种使用遗传算法解决多旅行商问题(MTSP)的MATLAB程序。该程序分别应对了五种情况:1. 不同起点出发回到起点(固定旅行商数量);2. 不同起点出发回到起点(根据计算可变的旅行商数量);3. 同一起点出发回到起点;4. 同一起点出发不回到起点;5. 同一起点出发回到不同终点(与起点不同)。这些算法能有效地解决复杂的旅行商问题,展示了MATLAB在优化领域的强大应用。
Matlab
2
2024-07-20
【旅行商问题】使用遗传算法解决TSP问题matlab源码.zip
【旅行商问题】使用遗传算法解决TSP问题matlab源码.zip
Matlab
0
2024-09-30
基于遗传算法的旅行商问题求解
该项目利用遗传算法解决旅行商问题,目标是在给定的30个城市(经纬度已提供)中找到最短路径。用户可以自定义调整重组概率、变异概率以及迭代次数,以优化算法性能。
算法与数据结构
7
2024-05-12
旅行商问题的遗传算法优化及其Matlab实现
Matlab编程实现了旅行商问题的优化解决方案,采用遗传算法进行效率提升。该方法通过遗传算法迭代优化旅行路径,以求得最优解。
Matlab
0
2024-09-28
基于蚁群算法的确定起点终点开放式旅行商问题路径规划
传统蚁群算法主要解决的是闭环旅行商问题 (TSP),即找到遍历所有节点并返回起点的最短路径。然而,在实际应用中,我们常常需要解决起点和终点不同的开放式旅行商问题 (Open TSP)。
为了解决这个问题,我们可以对经典蚁群算法进行以下修改:
信息素更新策略: 在经典蚁群算法中,信息素的更新是基于回路的,即每只蚂蚁完成一次遍历后更新路径上的信息素。而在开放式TSP中,我们需要根据每条边的访问频率和路径长度来更新信息素,而不考虑回路。
状态转移规则: 经典蚁群算法中,蚂蚁根据当前节点和信息素浓度选择下一个节点,最终形成一个回路。对于开放式TSP,需要修改状态转移规则,使得蚂蚁在访问所有节点后停止,而不是回到起点。一种方法是引入一个虚拟节点,连接起点和终点,并将虚拟节点的访问次数计入路径长度计算。
路径选择: 在完成所有节点的访问后,选择总长度最短的路径作为最终解。
通过以上修改,可以将经典蚁群算法应用于解决确定起点终点的无闭环旅行商问题,并找到最优或近似最优的路径。
总结
针对确定起点终点的开放式旅行商问题,提出了一种基于经典蚁群算法的改进方法。通过修改信息素更新策略、状态转移规则和路径选择方法,使其适用于开放式TSP,为实际应用中的路径规划问题提供了一种有效的解决方案。
Matlab
2
2024-06-17
基于Matlab的遗传算法解决多旅行商问题(包含Matlab源码)
CSDN上传的视频都附带完整可运行的代码,非常适合初学者使用。主要文件包括主函数main.m和其他调用函数的m文件。代码适用于Matlab 2019b版本,若运行出错,可根据提示进行调整或向博主求助。操作步骤简单明了:将所有文件放入Matlab当前文件夹,打开main.m文件,点击运行即可获得结果。如需更多仿真服务或定制Matlab程序,请联系博主。
Matlab
2
2024-07-31
基于MATLAB GUI的遗传算法多旅行商问题求解
本视频提供了一种基于MATLAB图形用户界面(GUI)的遗传算法(GA)来解决多旅行商问题(MTSP)。该算法适用于多个起始点和不同终点的场景。视频中包含了详细的代码和运行说明,便于理解和使用。
Matlab
2
2024-05-30
使用遗传算法解决旅行销售问题的MATLAB开发
介绍了如何利用MATLAB中的遗传算法解决旅行销售问题,涵盖了图形用户界面和无图形用户界面版本的开发细节。详细描述请参阅附带的docx文件。
Matlab
0
2024-09-30
Matlab TSP问题代码解决旅行商问题的优化算法
Matlab TSP问题代码旅行商问题(TSP)是一个经典的优化问题,用于展示数学编程算法在解决运输路线问题中的应用。具体来说,TSP被称为分配问题的一个实例。分配问题是运输问题的一种特殊情况,其中出发点与目的地的数量相同(m = n),每个出发点的供应量为1个单位,每个目的地的需求量也为1个单位。解决分配问题的主要目标是通过优化资源分配来实现最小化成本。在这个背景下,我们比较了两种方法:一种是松弛了Dantzig、Fulkerson和Johnson的约束(DFJ)的分配问题,允许创建子巡回路径;另一种是DFJ算法,它严格限制了子巡回路径的创建,从而提供了问题的全面解决方案。现在,我们使用Python对Matlab代码进行了重构和翻译,以支持CLI开发和用户集成。
Matlab
1
2024-08-04