一、实验目的:1、理解回溯算法的深度优先搜索策略。2、掌握应用回溯算法解决问题的算法框架。3、通过范例学习回溯算法的设计策略。二、实验环境:1、硬件环境:Windows 10;2、软件环境:编译器:Dev C++,语言:C语言。
回溯算法解决最优装载问题和旅行售货员问题
相关推荐
Matlab TSP问题代码解决旅行商问题的优化算法
Matlab TSP问题代码旅行商问题(TSP)是一个经典的优化问题,用于展示数学编程算法在解决运输路线问题中的应用。具体来说,TSP被称为分配问题的一个实例。分配问题是运输问题的一种特殊情况,其中出发点与目的地的数量相同(m = n),每个出发点的供应量为1个单位,每个目的地的需求量也为1个单位。解决分配问题的主要目标是通过优化资源分配来实现最小化成本。在这个背景下,我们比较了两种方法:一种是松弛了Dantzig、Fulkerson和Johnson的约束(DFJ)的分配问题,允许创建子巡回路径;另一种是DFJ算法,它严格限制了子巡回路径的创建,从而提供了问题的全面解决方案。现在,我们使用Python对Matlab代码进行了重构和翻译,以支持CLI开发和用户集成。
Matlab
1
2024-08-04
用演化算法解决旅行商问题.rar
演化算法(Evolutionary Algorithm,EA)是一种模拟生物进化过程的全局优化技术,John Henry Holland在20世纪60年代提出。它被广泛应用于解决各种复杂的优化问题,包括著名的旅行商问题(TSP)。旅行商问题(TSP)描述了一个销售员需要访问n个城市,每个城市只访问一次,并最终返回起点,目标是找到使得总距离最短的路径。演化算法通过基因编码表示每个城市的路径顺序,采用选择、交叉和变异操作来优化路径,以期找到最优解。
算法与数据结构
0
2024-08-03
遗传算法解决车辆路径最优化问题
使用遗传算法对基本车辆路径最优化问题进行求解,以路径长度作为适应度函数,通过增加惩罚因子体现约束函数。
Matlab
3
2024-05-13
【旅行商问题】使用遗传算法解决TSP问题matlab源码.zip
【旅行商问题】使用遗传算法解决TSP问题matlab源码.zip
Matlab
0
2024-09-30
MATLAB解决多旅行商问题的遗传算法
介绍了一种使用遗传算法解决多旅行商问题(MTSP)的MATLAB程序。该程序分别应对了五种情况:1. 不同起点出发回到起点(固定旅行商数量);2. 不同起点出发回到起点(根据计算可变的旅行商数量);3. 同一起点出发回到起点;4. 同一起点出发不回到起点;5. 同一起点出发回到不同终点(与起点不同)。这些算法能有效地解决复杂的旅行商问题,展示了MATLAB在优化领域的强大应用。
Matlab
2
2024-07-20
使用遗传算法解决旅行销售问题的MATLAB开发
介绍了如何利用MATLAB中的遗传算法解决旅行销售问题,涵盖了图形用户界面和无图形用户界面版本的开发细节。详细描述请参阅附带的docx文件。
Matlab
0
2024-09-30
基于遗传算法解决旅行箱问题的Matlab仿真程序
随着旅行箱问题的复杂性增加,基于遗传算法的Matlab仿真程序成为解决TSP问题的有效工具。该程序通过优化算法,寻找最优旅行路径,以提高效率和准确性。
Matlab
1
2024-07-30
模拟退火算法优化旅行商问题
旅行商问题是一个经典的优化挑战,在实际应用中,模拟退火算法显示出了有效解决这一问题的潜力。通过模拟退火的非确定性搜索和全局优化能力,可以显著提高解决方案的质量和效率。
算法与数据结构
1
2024-07-13
回溯法解决资源约束下二维动态规划问题
利用回溯法解决资源约束下的二维动态规划问题
算法与数据结构
5
2024-05-20