以权益联结型年金产品中的最低期满利益保证年金为研究对象,假定标的权益服从随机波动性模型,得到了最低期满利益保证年金在α分位数下的准备金的显式表达式。接着,利用2012年深成指日交易收盘价数据进行了对数收益率的基本统计分析。最后,对准备金的影响因子进行了敏感性分析。
基于随机波动性模型的权益联结型年金准备金研究 (2013年)
相关推荐
ACK序号步长波动性检测LDoS攻击
利用ACK序号步长突变特征,提出排列熵检测LDoS攻击方法。该方法提取ACK序号步长排列熵,检测突变时刻,实现LDoS攻击检测。
统计分析
8
2024-05-15
金融领域的神经网络局部波动性模型Dupire公式与Matlab代码
Chataigner,Cousin,Crepey,Dixon和Gueye共同开发了名为DupireNN的Matlab代码。如需用于研究,请引用Chataigner,A. Cousin,S. Crepey,MF Dixon和D. Gueye的工作文件(2020)。此外,笔记本dupireNN.ipynb基于Dupire公式实现了神经网络局部波动性模型。为遵循GitHub文件大小限制,笔记本输出已删除,仅保留代码。另一笔记本MCBacktests.ipynb使用Gatheral和Jacquier(2014)开发的方法进行SVI波动率表面校准。SSVI校准受Matlab代码Philipp Rindl
Matlab
6
2024-07-21
随机波动kim(1998)论文
利用马尔科夫链蒙特卡罗采样方法,提出了一种统一的、实用的基于似然的随机波动模型分析框架。采用一种高效的方法,通过近似偏移混合模型一次性采样所有未观测到的波动率,然后进行重要性重加权。通过实际数据对该方法与几种替代方法进行比较。同时,开发了基于模拟的滤波、似然评估和模型失效诊断方法。研究了使用非嵌套似然比和贝叶斯因子进行模型选择的问题。这些方法用于比较随机波动模型和GARCH模型的拟合度,并详细说明了所有步骤。
算法与数据结构
7
2024-07-12
基于非参数贝叶斯模型的新型聚类算法(2013年)
聚类分析是机器学习和数据挖掘领域重要技术之一,与监督学习不同,聚类分析无需类别或标签指导,因此如何选择适当的聚类个数一直是难点。为解决这一问题,提出了一种基于Dirichlet过程混合模型的新型聚类算法,采用collapsed Gibbs采样算法对模型参数进行估计。新算法基于非参数贝叶斯模型框架,通过连续采样优化模型参数,实现自适应聚类个数。在人工合成和真实数据集上的实验表明,该算法表现出良好的聚类效果。
数据挖掘
9
2024-08-14
基于混凝土井壁的极限承载力模糊随机模型研究
为提高地下结构工程中深土井筒支护的安全可靠性,本研究以两淮矿区深厚冲积层井壁为基础,通过钢筋混凝土井壁模型试验,分析了混凝土抗压强度、厚径比和配筋率对井壁极限承载力的影响。利用大数据挖掘和模糊随机模型,研究了材料性能、几何参数和计算模式的不确定性分布,优化了传统算法,提出了改进后的大数据挖掘井壁极限承载力模糊随机模型,适用于实际地下工程中的不确定特性。
数据挖掘
8
2024-08-31
矿产资源权益金制度对煤炭地勘行业影响分析
从行业发展趋势、区域政策比较和企业行为特征三个层面出发,构建了探讨矿产资源权益金制度实施对煤炭地勘行业影响的分析框架,并采用公开数据进行了统计分析。研究结果显示,权益金制度实施后,煤炭地勘市场呈现持续下行趋势;煤探矿权基准价采用了与探矿权基准价对接的方案,各省区差异显著;煤探矿权集中分布于中西部地区,总体勘查工作强度不高,需加强勘查精度和地质保障程度;项目投入强度分布不均,煤探矿权投入来源较为分散。研究提出加强顶层设计、优化行业分工,引导改革创新、助推转型升级,把握发展机遇、提升运营水平等建议。
统计分析
8
2024-08-24
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
5
2024-08-18
基于人体能量模型的数据挖掘研究 (2011年)
利用数据挖掘技术,结合人体运动捕捉数据,探讨了基于能量模型的新算法。与传统几何位置相比,人体能量模型能够有效降低动作数据的复杂度,并准确反映原始动作特征。研究还通过相关系数分析不同关节之间的协同性,提取出低维度的动作索引。实验结果表明,该索引有效捕捉了动作的关键特征。结合支持向量机,该方法能够有效分类输入动作,为动作识别领域带来新的可能性。
数据挖掘
6
2024-07-27
导入计量型控制图前的准备事项
建立矫正行动管理制度
定义制程系统
决定控制特性
顾客需求
问题区域及相互关系
统计分析
14
2024-05-13