Druid是一个专门用于大数据分析的分布式数据存储系统,由MetaMarkets公司于2011年创建,并在2012年开源。它在处理大规模数据和实时分析方面表现优异,与传统的在线分析处理(OLAP)系统相比,具有显著的性能优势,并能够无缝集成Hadoop等开源生态系统。Druid的设计理念以分析为核心,通过快速查询、水平扩展能力和实时分析来满足大数据场景的需求。其主要特点包括列式存储、可扩展性、并行处理、实时与批量摄取、自愈与自平衡、容错和云原生支持等。
Druid大数据技术详解
相关推荐
Hive大数据技术详解
Hive作为大数据技术的重要组成部分,具有广泛的应用前景。它通过提供类似SQL的查询语言,使得处理大规模数据变得更加高效和便捷。
Hive
2
2024-07-15
大数据技术应用详解
详细介绍了大数据测试的全面方法,是相关从业人员的优秀参考资料。
Hadoop
3
2024-07-16
构建大数据Druid集群的实时分析平台
Druid是一款用于大数据实时分析的平台,能够处理大规模数据的实时查询和分析需求。详细的搭建步骤包括准备环境,安装依赖项如最新版imply-2.4.8、JDK 1.8和Node.js,配置Druid扩展和Deep Storage,以及设置数据查询Web界面和Zookeeper、Kafka集群连接信息。Druid支持多种数据源,包括mysql、kafka等,具备强大的实时查询和分析能力。
Storm
0
2024-09-13
大数据技术之Hadoop详解
在当前数字化时代,大数据已成为企业和组织的重要资产。作为大数据处理的核心框架,Hadoop扮演着至关重要的角色。详细介绍了大数据的基本概念、特点、应用场景、发展趋势以及Hadoop的相关知识。大数据不仅仅是数据量的庞大,它还包含了Volume(大量)、Velocity(高速)、Variety(多样)和Value(低价值密度)等关键特性。大数据的应用涵盖物流仓储、零售、旅游、商品推荐、保险、金融、房产以及人工智能等多个领域。各国政府和企业对大数据技术的投资持续增加,显示出该行业的广阔前景。Hadoop作为开源的分布式计算框架,通过其不断演进的组件,如MapReduce、YARN和HDFS,实现了对海量数据的高效处理和管理。
Hadoop
3
2024-07-15
SAP大数据技术应用详解
详细探讨了SAP如何利用大数据技术实现数据的价值,强调了其在企业应用软件领域的领先地位和大数据战略。SAP的大数据方案涵盖了企业资源规划、供应链管理、客户关系管理等多个领域,利用海量、高速、多样、价值四大特征来推动企业的业务发展。
算法与数据结构
0
2024-09-14
大数据平台技术框架详解
这篇文章总结了大数据平台常用的技术框架,适合初学者阅读。内容实用且易懂。
Hadoop
0
2024-08-31
Druid与Spark Streaming整合技术探究
Druid与Spark Streaming整合技术深入解析####一、背景介绍在大数据处理领域,Apache Spark因其高效数据处理能力广受欢迎,而Druid则以实时数据聚合和查询著称。结合Spark Streaming与Druid,可实现对流式数据的实时分析,并利用Druid快速查询与可视化展示数据。 ####二、依赖配置为了整合Spark Streaming与Druid,首先需添加以下关键依赖: 1. Scala库: - org.scala-lang:scala-library:2.11.8:Scala标准库。 2. Jackson库: - com.fasterxml.jackson.core:jackson-databind:2.4.5:JSON数据绑定。 3. Java Util库: - com.metamx:java-util:1.3.2:常用工具类。 4. Tranquility-Spark库: - io.druid:tranquility-spark_2.11:0.8.2:Druid模块,支持与Spark集成。 5. Spark Streaming库: - org.apache.spark:spark-streaming_2.11:2.2.0:流式数据处理支持。 6. Config库: - com.typesafe:config:1.3.3:配置管理。这些依赖确保项目顺利进行。 ####三、Beam工厂示例代码中的“Beam工厂”部分主要说明如何将Beam对象数据转换为BeamRDD,批量写入Druid。重点在于Beam类及其相关方法,以下详细解释: 1. 关键导入: - import com.metamx.common.Granularity - import com.metamx.tranquility.beam.{Beam, ClusteredBeamTuning}
spark
0
2024-08-21
尚硅谷大数据技术——Hadoop详解
2003-2004年,Google公开了部分GFS和Mapreduce思想的细节,Doug Cutting等人在此基础上用了两年时间实现了DFS和Mapreduce机制,显著提升了Nutch的性能。2006年3月,Map-Reduce和Nutch Distributed File System(NDFS)正式成为Hadoop项目的一部分,最终由Apache基金会接管。
Hadoop
2
2024-07-16
工业大数据技术架构详解
工业大数据技术架构白皮书是一份详细说明工业领域内大数据技术架构及其应用的指导文件。它由工业互联网产业联盟的工业大数据特设组发布,反映了该领域内的最新研究成果和应用实践经验。白皮书不仅讨论了大数据技术在工业环境中的核心地位,还提供了实际案例和具体技术组件的介绍,以及工业大数据系统建设的意义、目标、重点问题、架构实现等多方面内容。根据白皮书的内容,我们可以了解到以下知识点: 1. 工业大数据的定义和重要性:指的是在工业生产、运营过程中产生的大量数据的集合。这些数据来源于设备、传感器、控制系统和生产管理系统等,具有“4V”特征——大容量(Volume)、高速度(Velocity)、多样性(Variety)和真实性(Veracity)。2. 工业互联网与大数据:强调数据在推进工业系统智能化变革中的基础性作用。3. 工业大数据技术架构:包括数据的采集与交换、集成与处理、建模与分析、决策与控制等几个层面。4. 数据采集与交换:涉及到各种数据源的数据提取和转换。5. 数据集成与处理:确保数据质量、清洗和格式化。6. 数据建模与分析:利用数据挖掘和机器学习等方法形成可操作的模型。7. 决策与控制应用:为决策提供支持,提升生产效率和质量。8. 技术发展现状:讨论了各种新兴技术的应用和实现情况。9. 法律声明和知识产权:强调未经授权许可不得擅自使用报告内容的法律义务。10. 编写单位和编写组成员:由工业互联网产业联盟牵头,多家知名研究机构和企业参与编写,确保了报告的权威性。
算法与数据结构
0
2024-10-31