《概率论与数理统计》第二章详细阐述了随机变量的概念及其重要性。随机变量根据取值类型可分为离散型和连续型两大类。离散型随机变量只能取有限个或可数无限多个离散数值,例如抛硬币的结果或抽奖中奖次数。其概率质量函数P(x)定义了各可能取值的概率分布,满足ΣP(x)=1且P(x)≥0。连续型随机变量则能够取任意实数值,其概率密度函数描述了取值的可能性。累积分布函数F(x)定义了随机变量小于或等于x的概率,是连续非减函数。