感谢阅览
感谢阅览-大数据平台策划方案报告(PPT-22页)
相关推荐
低成本运营-大数据平台策略规划报告(PPT-22页)
低成本运营和大数据平台规划方案一体化运营,精细化管理全网运营,实时智能化运营集中化建设、管理和维护,可线性扩展提高资源综合利用率。标准化功能组件可共享和复用,按业务量和需求支付BASS与BOSS,CRM的一体化BSS与MSS,OSS,VAS等跨域一体化服务,对外部客户和应用实施片区化和网格化管理。支持长尾市场和小众市场,满足个性化和短周期需求。支持异地客户、家庭客户和集团客户一点接入,全网服务和全网客户画像。推广全国统一套餐和全网营销,统一客服实时数据获取、处理和分析,智能化主动事件触发和智能管道。支持移动互联网业务运营发展趋势,集中化要求对业务支撑平台和数据架构的大容量、高扩展和高可用性需求。支持全网型数据和跨域数据的集中化管理,形成企业级数据中心,满足3G时代更高的实时性和动态资源共享需求。形成可重用和标准化的组件,支持一次开发和各省共享的模式,实现规模效益。
Hadoop
3
2024-07-19
Hadoop平台数据管理方案详解(PPT-22页)
Hadoop平台作为主数据仓库,整合报表数据、指标库及客户统一视图等信息。数据来源包括汇总层、轻度汇总层和明细数据层,各层通过ETL工具进行数据清洗和转换,确保数据质量。应用层包括精细化营销和其他业务应用,依托大数据平台提供支撑,支持SQL、FTP、HSQL、API等多种数据访问方式。
Hadoop
2
2024-07-16
大数据平台方案
智慧园区大数据平台建立宏观经济发展、社会公共服务的数据库和数据服务,架构包含支撑体系、网络系统、信息共享平台、数据库体系、应用系统等,为数据交换处理、应用支撑、数据综合分析提供支持。
Hadoop
4
2024-05-20
52页中国大数据行业研究报告
大数据概况与发展现状:- 全球与中国大数据行业发展情况
细分市场:- 大数据细分领域发展情况
典型企业案例:- 大数据产业代表性企业介绍
应用场景:- 大数据的应用领域分析
发展趋势:- 大数据行业未来发展展望
spark
4
2024-04-30
大数据竞赛的平台建设方案
为了促进大数据竞赛的发展,我们提出了一套完善的平台建设方案。
Hadoop
0
2024-09-13
大数据平台整体解决方案指南
了解大数据平台的综合解决方案对于业内人士至关重要。
Hadoop
3
2024-05-20
构建高效可靠的大数据平台方案
大数据平台建设方案详解
一、对大数据平台的需求
在当前信息化时代,企业和组织面临着海量数据处理的挑战。为了有效地管理和利用这些数据,构建一个高效、可靠的大数据平台变得至关重要。大数据平台可以帮助企业实现数据的采集、存储、处理、分析及展示等功能,从而为企业决策提供支持。
二、大数据平台方案介绍
本方案提供一种全面的大数据平台建设方法,以满足企业对大数据处理的各种需求。主要分为以下几个方面:1. 总体架构:采用先进的架构设计原则,确保系统的稳定性和扩展性。2. 数据资源:涵盖数据仓库中的各类数据及数据服务,确保数据的全面性。3. 数据管理:实施严格的管理制度,保障数据的准确性、高效性和易用性。4. 数据应用:开发多种应用系统,实现数据的价值最大化。
三、大数据平台技术支撑
详细介绍了大数据平台的技术支撑体系,包括数据模型设计、数据抽取加工、运行监控及数据治理等方面。1. 数据模型设计- 分层设计:通过合理的分层设计,实现数据的有效管理和利用。- 源数据设计:确保能够准确地获取增量数据。- 准备区设计:作为技术缓冲区,负责数据的抽取、清洗及格式转换。- 贴源层设计:保持数据与源数据一致性的同时进行必要的清洗和转换。- 面向主题的设计:分为面向管理、分析及应用三个层次,实现数据的有效组织和利用。2. 数据抽取加工- 增量框架:基于精确增量的抽取与加工,提高效率和准确性。- 完善的清洗与比对:增强数据质量控制能力,确保数据加工的完整性和正确性。3. 运行监控- 可视化调度:基于数据血缘关系实现动态可视化调度。- 调度资源管理:提供灵活的资源配置功能,优化调度性能。4. 数据治理- 数据资产管理:建立全面的数据资源目录,方便用户快速了解数据资产。- 数据质量管理:实施事中管理和事后管理相结合的数据质量控制策略。
四、数据业务化封装
业务数据模型:从业务人员的角度出发,设计符合业务需求的数据模型,同时便于进行数据标准化和质量管理。
五、总结
通过以上详细介绍可以看出,构建一个高效的大数据平台需要综合考虑总体架构设计、数据管理和数据应用等多个方面。
Hadoop
0
2024-10-31
感谢信
致谢函用于表达对个人或组织的感激之情,通常在受到帮助或支持时使用。
Redis
3
2024-07-14
Hadoop大数据开发实战优化HDFS读写流程培训课程(PPT-59页)
HDFS读写流程包括文件读取和写入两个主要过程。在文件读取过程中,客户端向NameNode发送读取文件请求,如果文件存在,则获取该文件的数据块位置信息并与多个DataNode并行建立连接获取数据。若文件不存在,则返回错误信息。在文件写入过程中,客户端发送写文件请求给NameNode,确认文件不存在后,将文件分块并并行存储到不同的DataNode上。写入完成后,客户端通知NameNode和DataNode,并等待确认信息,确认后提交写入操作。
Hadoop
2
2024-07-14