罗贝科提供了三个Jupyter书签,包括ERC_CDaR和HRP C_DaR的回测分析。ERC_CDaR采用标准差、风险标准价值和风险条件性提款等不同风险度量,与同等加权和最小方差策略进行比较。HRP C_DaR利用层次聚类机器学习方法进行回溯测试。统计分析显示它们的锐化率在p_val = 0.023和p_val = 0.02水平上显著异于基准策略。此外,还介绍了一款名为《Hearts of Fire》的网格世界游戏,玩家需收集心脏以避免触发炸弹,尝试使用强化学习优化游戏代理人的策略。