AutoPlait是一个创新的自动数据挖掘算法,由Yasuko Matsubara、Yasushi Sakurai和Christos Faloutsos于2014年在SIGMOD上发表的论文中提出。该算法针对共同演化的时间序列(例如动作捕捉传感器的数据、网页点击、社交网络中的用户行为)提供了高效、自动化的分析方法。这个算法的应用包括BTC时序分析、数据可视化和用户行为统计分析。本repository是HIT-2012级软件工程-算法课的自选课程设计之一,探索海量时间序列数据集合中的典型模式。
AutoPlait算法的实施共同进化时间序列的自动挖掘
相关推荐
进化算法在时间序列分割中的距离度量优化研究
时间序列分割是对时间序列数据进行分析和挖掘的重要方法之一。在给定标准模式的情况下,进化算法能够根据这些模式优化距离度量,以提高分割效果。
数据挖掘
7
2024-08-08
时间序列挖掘算法研究与应用
时间序列挖掘是个相对复杂的领域,但其实有不少挺实用的算法和工具可以搞定。比如,STUMPY这个 Python 库就是一个高效的时间序列数据挖掘工具,适合进行相似度。如果你需要进行模式挖掘,PrefixSpan算法就蛮不错,它可以你在大数据中快速发现序列模式。Matlab方面也有多时间序列的代码,可以参考一下,快速实现一些基础的功能。另外,如果你对聚类感兴趣,基于时间序列的聚类算法也是一个不错的选择,能你从复杂数据中挖掘出有用的信息。你可以根据具体需求挑选合适的算法,组合起来会更高效哦。
数据挖掘
0
2025-06-17
时间序列聚类聚类算法在时间序列数据中的应用
时间序列的聚类算法应用真的是一个挺有意思的方向。尤其是你要那种每分钟、每小时、每天都有数据变动的项目时,用上这些聚类方法,多隐藏模式就能跑出来了。对比传统的表格数据,时间序列多了个“顺序”的事儿,所以聚类思路上也得跟着变点玩法。
算法与数据结构
0
2025-07-01
基于时间序列的聚类分析算法实现
该资源提供基于时间序列的聚类分析算法实现,适用于股票时间序列等数据分析,资源代码库:clustering-algorithms-master
算法与数据结构
18
2024-05-24
知识背景序列模型与时间序列模型的对比分析-序列模式挖掘
知识背景的序列模型和时间序列模型,经常让人傻傻分不清。其实还挺好区分的。序列模型主要是一串行为的顺序,比如用户买了 A 又买 B,再买 C——这种叫行为路径挖掘;而时间序列模型更像是盯着一个指标随时间变动的走势,比如股票价格、温度变化那类有时间自相关的事。想挖点干货?这几个资源还蛮值得一看:ARMA 模型那个不错,直接上了Python 代码,方便你边看边跑。还有个叫resampleX的工具,专门搞时间序列重采样,数据挺顺手。如果你喜欢用MATLAB或SAS做,也有现成的教程和代码,比如MATLAB 时间序列和SAS 时间序列。嗯,页面风格有点老,不过内容挺实用的。还有一点要注意,时间序列的建模
数据挖掘
0
2025-07-02
数据挖掘中Aprior算法的实施
这篇文章讨论了数据挖掘领域中关联规则的Aprior算法实现。这段程序是从网络上找到的,原作者未知,作者仅进行了轻微修改。如果您知道原作者,请联系我,我将感激不尽。
数据挖掘
11
2024-07-13
时间序列模式挖掘Golang高级编程
时间序列的模式挖掘是搞算法的朋友迟早要踩的一坑。golang 高级编程这块内容挺扎实,尤其是工业设备产生的那种高频时序数据,资料里提到的像ARIMA、GARCH这些老朋友不用多说,做预测的都绕不开。分类那块讲得也还不错,提到了SAX、相似度匹配啥的,基本是你日志、传感器数据会碰到的套路。你要是数据量大,推荐看看AutoPlait、HOD-1D这些切片算法,起来效率还蛮高。还有频繁模式匹配那段,像MEON、motif方法也都有提,适合搞智能检测、状态识别这类项目。内容不空谈理论,都是直接上干货的风格,嗯,还附了不少链接,扩展阅读也挺方便。如果你最近刚好在做设备预测维护、行为模式识别之类的,不妨瞄
算法与数据结构
0
2025-06-25
在线时间序列数据挖掘优化
时间序列数据挖掘是数据分析中重要的分支之一,专注于从序列数据中提取信息和模式。在这个过程中,相似性度量是核心任务之一。欧几里得距离作为基本的相似性度量方法之一,具有线性时间复杂度,但对异常点敏感,且要求比较的序列长度相等。动态时间规整(DTW)作为另一种有效方法,能够测量不同长度时间序列之间的相似性,通过弯曲操作处理等长时间序列,使其匹配到相似趋势上。文章《在线和动态时间规整,用于时间序列数据挖掘》提出了一种加速DTW计算的方法,通过滑动窗口将长序列分割为短子序列,并提出了有效的DTW算法来测量子序列间的相似性。数值实验表明,该方法比传统DTW方法更快、更有效。文章还结合在线学习,将DTW应用
数据挖掘
11
2024-08-31
探寻序列数据中的规律:序列模式挖掘算法解析
序列模式挖掘:在包含多个有序序列的数据集中,每个序列由按特定顺序排列的不同元素构成,每个元素又包含不同的项目。通过设置最小支持度阈值,算法识别频繁出现的子序列,即满足出现频率高于阈值的子序列模式。
算法与数据结构
19
2024-04-29