该存储库扩展了openMHA框架,提供了一个工具用于可视化基于GCC-PHAT的定位算法。它包括三元组插件:特征提取、GCC-PHAT计算、分类(线性SVM和S型变换)、以及合并(对指定持续时间内的值进行总和、最大值或平均值分组)。此外,项目还提供了一个用于与openMHA实例通信的Python类。
matlab代码影响-doasvm-visualizer:doasvm到达方向估计器的可视化演示
相关推荐
大数据日志可视化演示案例
在大数据领域,日志数据是非常宝贵的资源,记录了系统运行中的各种活动,包括用户行为、系统状态、错误信息等。\"大数据日志可视化演示案例\"是一个完整的解决方案,展示如何高效处理、分析和展示这些日志数据。项目涉及关键技术组件:Flume、Kafka、Spark以及Web页面展示。Apache Flume是Hadoop生态系统中的一个分布式、可靠的服务,用于高效收集、聚合和移动大量日志数据。在此项目中,Flume负责日志采集。通过配置Flume agent,从多源(如服务器日志文件、应用程序接口等)收集数据,然后传输到指定目的地。Flume具备高容错性和可扩展性,确保数据完整性。接下来,Apache Kafka是高吞吐量、分布式的发布订阅消息系统,作为日志数据的中间存储,接收Flume数据,并保证顺序传输。Kafka的持久化和集群特性确保数据安全存储和备份,便于后续处理和分析。然后,Apache Spark是快速、通用、可扩展的开源框架,用于大规模数据处理。在日志分析中,Spark高效预处理数据,如清洗、转换和分级。Spark利用内存计算能力处理大量日志数据,同时提供SQL接口(如Spark SQL)简化数据分析。日志数据实时可视化是项目关键部分,可能使用工具如Grafana或Kibana连接Spark或Kafka,实现实时仪表板展示。管理人员可通过Web界面直观查看监控日志数据,例如,查看日志级别分布、错误趋势及特定事件频率。实时可视化帮助及时发现解决系统问题,提升运维效率。总结\"大数据日志可视化演示案例\",涵盖了日志采集、传输、处理和展示,利用Flume收集、Kafka存储、Spark处理和Web页面展示。对于理解和实践大数据日志管理具有重要参考价值,特别是实时监控和故障排除。
spark
0
2024-08-21
r相关可视化代码
提供丰富的可视化库,满足不同需求。
绘制各种图表,包括条形图、折线图、散点图等。
自定义图表外观和设置。
交互式图形,方便探索和分析数据。
统计分析
11
2024-04-30
Matlab 数据可视化
本材料讲解使用 Matlab 进行数据可视化的基本方法和技巧。内容涵盖二维、三维图形绘制,图形属性设置,以及常用绘图函数的使用等方面。通过学习,您将掌握使用 Matlab 创建高质量数据可视化结果的能力。
Matlab
3
2024-06-03
使用Python进行Matlab导入Excel代码的可视化
结束无聊数据研讨会,利用Python将电子表格中的数据赋予更深层次的含义。探索不同Python库的数据可视化选项,包括创建地图、统计图和交互式可视化效果,从而使博客帖子更加丰富和引人入胜。演示介绍了底图、大叶草等库的制图功能,以及matplotlib、seaborn、Bokeh和Plotly等库的应用,解决了数据分析中的挑战。
Matlab
0
2024-08-27
MATLAB可视化编程学习
探讨利用MATLAB进行可视化编程的方法。MATLAB作为一款强大的科学计算软件,其内置的可视化工具为数据分析和结果展示提供了极大的便利。文章将介绍MATLAB可视化编程的基本概念、常用函数以及实际应用案例,帮助读者掌握使用MATLAB创建直观、生动的图形界面的能力。
Matlab
3
2024-05-31
MATLAB可视化结果展示
执行结果展示如下。
Matlab
1
2024-07-31
数据可视化
可视化是理解和分享数据洞察力的重要工具。恰当的可视化可以帮助表达核心思想或开启探索空间;它可以让世界对数据集进行讨论或分享见解。
算法与数据结构
2
2024-05-20
时间数据可视化源代码
这份资源提供了时间数据可视化的基础命令和相关图片,供大家学习参考。
统计分析
3
2024-05-12
MATLAB中复数可视化基础
本教程介绍了在MATLAB中对复数进行可视化的基本语法。代码示例涵盖了复数平面上的实部和虚部图、时间域上的复数变化图、极坐标图和半对数坐标图。
Matlab
2
2024-05-30