首先,阐述了数据驱动故障诊断方法的研究动机和国内外发展现状。从新的视角,将现有方法划分为基于数据驱动的方法、基于分析模型的方法和基于定性经验的人工智能方法,说明该方法在整个体系中的地位,并探讨了其数据利用及与基于分析模型的方法的比较。接着,按照新分类对基于数据驱动的故障诊断现有方法进行综述,分析并比较了各方法的区别和联系。最后,指出了数据驱动故障诊断方法的几个前景广阔的研究方向。
数据驱动的故障诊断方法综述
相关推荐
设备故障诊断及远程维护
设备故障诊断,远程维护,快速解决问题。
算法与数据结构
5
2024-05-16
WVD信号处理方法在内圈故障诊断中的应用
魏格纳—威尔分布(Wigner-Ville Distribution, WVD)是一种非线性时频分析方法,在机械系统特别是内圈故障诊断中具有重要应用。详细探讨了WVD的概念、工作原理及其如何帮助识别振动信号中的故障特征频率。使用MATLAB进行实现时,用户可以通过编写代码计算和可视化WVD图像,进一步加深对信号时频特性的理解。
算法与数据结构
0
2024-09-14
粗糙集约简飞机故障诊断
应用变精度粗糙集简化飞机发电机故障诊断,通过下近似集判定定理和决策约简规则提取有效信息。采用决策表、约简规则和专家经验构建决策约简表,验证了该方法的准确性和普适性。
数据挖掘
4
2024-04-30
DB2 故障诊断指南
IBM DB2 官方故障诊断指南,全面适用。
DB2
7
2024-05-13
基于神经网络的故障诊断程序
一个利用Matlab实现故障诊断的神经网络程序。该程序通过神经网络模型来识别和分析设备故障,为工程师提供精准的故障诊断解决方案。
Matlab
4
2024-07-19
KPCA在TE过程故障诊断中的应用
在TE的过程故障诊断中,KPCA(核主成分分析)提供了强大的支持。以下是一个实用的MATLAB程序,能够有效地实施KPCA方法来分析TE过程中的数据,帮助识别潜在的故障。希望这个程序能够为您的工作带来便利。
Matlab
0
2024-11-01
基于工业大数据的生产设备部件故障诊断
基于工业大数据的生产设备部件故障诊断
项目时间: 2017年12月01日 - 2018年6月01日
项目内容:* 对历史运行数据进行归类和清洗。* 采用数据驱动的方式对历史数据进行数据挖掘。* 在工业大数据环境下整合处理数据。* 利用处理后的历史数据信息,建立针对研究对象的故障模型,并提供人机交互界面。* 当设备出现故障时,根据当前采集的设备参数,按照预先定义的算法在故障模型中进行搜索,确定故障类型并显示。* 比较不同数据挖掘算法的性能,分析其优劣和适用场景。
项目任务要求:* 收集生产设备故障数据。* 查阅相关文献,整理设备故障信息。* 学习数据挖掘算法,能够基于数据驱动的方式进行分析。
数据挖掘
4
2024-05-19
基于信息增量矩阵的非高斯过程故障诊断
传统的多元统计分析方法在故障诊断中常依赖于正态分布假设,而实际工业过程数据往往不服从正态分布。Q统计量方法虽然基于正态分布假设,但其诊断性能在非高斯数据情况下表现欠佳。信息增量矩阵 (IIM) 方法则不受正态分布限制,通过定义协方差矩阵、计算信息增量矩阵、信息增量均值和动态阈值等步骤,实现对非高斯过程的有效故障诊断。
数值模拟和田纳西州伊斯曼过程案例研究表明,IIM 方法在非高斯数据情况下具有更高的检测性能,有效降低了误报和漏报率,优于 Q 统计量方法。
统计分析
8
2024-05-12
SQL Server 数据库性能优化与故障诊断
本主题将深入探讨 SQL Server 数据库性能优化和故障排除的策略和技巧,涵盖主机、实例和数据库三个层面。
主机性能问题排除
CPU 使用率分析与优化
内存资源瓶颈识别与解决
磁盘 I/O 性能监控与调优
Instance 性能问题排除
SQL Server 配置参数优化
连接数管理与优化
阻塞与死锁问题诊断与解决
数据库性能问题排除
索引优化与查询调优
执行计划分析与优化
数据库设计与数据结构优化
SQLServer
2
2024-05-31