基于 PGConf.CN 2019 大会刘澎演讲的培训 PPT,对中国开源生态系统的现状和能力进行了深入分析。
中国开源生态与能力现状分析
相关推荐
NoSQL现状分析
经历了多年的激烈讨论,现在是对NoSQL现状进行阶段性总结的时候。NoSQL的发展如此迅速,以至于难以简单概括其成就和不足。在多个领域,NoSQL不仅在行业内取得了显著成就,也在学术界获得了认可。高校开始将NoSQL纳入课程,不再仅仅教授传统数据库。深入学习关系型数据库仍然重要,而NoSQL作为补充是不可或缺的。在短短几年间,NoSQL领域爆发性增长,产生了数百个新数据库,nosql-database.org列出了150个这样的数据库,包括一些较古老的对象数据库。
NoSQL
4
2024-07-12
数据挖掘技术与应用现状分析
数据挖掘技术及其应用现状探析
一、数据挖掘技术概述
数据挖掘 (Data Mining, DM) 是从海量、不完整、有噪声、模糊、随机的数据集中提取出隐含的、未知的、有潜在用处的信息和知识的过程。随着大数据和信息技术的发展,这项技术变得越来越重要。
二、数据挖掘过程
数据挖掘过程通常可以分为以下几个阶段:
数据准备:这是数据挖掘的第一步,包含数据选取和数据预处理两个子步骤。
数据选取:根据用户需求从原始数据库中选取目标数据。
数据预处理:包括数据清洗、缺失值处理、异常值检测、数据转换和数据归约等。 例如,通过数据清洗去除噪声数据,通过数据转换将连续型数据转换为离散型数据等。
数据挖掘:此阶段需要确定挖掘目标、选择合适的挖掘算法,并执行挖掘操作。
确定目标:明确数据挖掘的具体目的。
选择算法:根据挖掘目标选择合适的算法,如关联规则、分类、聚类等。
实施挖掘:运用选定的算法从数据库中抽取知识。
结果解释与评估:评估挖掘出来的知识的有效性和实用性,必要时进行结果的解释工作,以确保用户能够理解并使用这些知识。
三、数据挖掘系统的体系结构
数据挖掘系统通常采用三层架构:1. 数据源层:包括数据库、数据仓库等数据存储资源。2. 挖掘器层:该层负责处理数据挖掘算法和技术,实现数据挖掘功能。3. 用户层:提供用户接口,使用户能够查看和理解挖掘得到的知识。
四、数据挖掘的主要方法
数据挖掘的方法多样,常见的包括:1. 关联规则方法:用于发现数据集中物品之间的相关性。例如,“90%的客户在购买面包的同时也会购买牛奶”这种类型的规则揭示了购物篮分析中的模式。2. 分类和聚类方法:- 分类:根据已知类别将数据对象分配到不同的类中。例如,预测客户是否会购买某个产品。- 聚类:将相似的对象聚集在一起形成簇。这种方法不需要预定义的类别,适合于探索性数据分析。3. 回归分析:用于预测数值型变量间的依赖关系。4. 决策树:通过树状结构来表示决策过程和可能的结果。5. 神经网络:模仿人脑神经元工作原理的一种算法,适用于非线性关系的建模。6. 支持向量机:特别适用于高维数据的分类任务。
数据挖掘
0
2024-11-06
2019年中国大数据产业发展现状与趋势
受政策环境利好、技术持续革新以及数字应用普及等因素驱动,2018年中国大数据产业规模达到4384.5亿元,预计到2021年将突破8000亿元,达到8070.6亿元。大数据产业的蓬勃发展正推动传统产业转型升级,为经济增长注入新活力,并为智慧城市建设和数字经济发展提供有力支撑。
算法与数据结构
3
2024-05-28
数据挖掘语言现状与应用
数据挖掘语言包含数据挖掘查询语言、建模语言和通用语言,支持临时、交互式数据挖掘,便于知识发现。每种语言各有特点:
数据挖掘查询语言:侧重于查询和检索
数据挖掘建模语言:专注于构建模型
通用数据挖掘语言:融合多种功能,涵盖数据预处理、建模、可视化等
数据挖掘
4
2024-05-26
国内外量化交易研究现状分析
1.2 国内外研究现状
1.2.1 国外研究现状
国外有关量化交易的研究内容非常广阔,这里主要选取公开出版的著作进行讨论。斯坦福大学华人统计学家黎子良从理论研究的角度讲述了数量金融中最重要的统计模型和方法,通过统计建模与统计决策的理论,将复杂的金融理论与投资实务相结合,具有深刻的理论意义和借鉴价值。Richard Tortoriello归纳了七个投资维度:盈利性、估值、现金流、成长性、资产配置、价格动量及危险信号,给出了如何有效结合单个投资因子或组件因子,构建多因子策略,从而形成更全面的选股模型。金斯伯格详细阐述了基于MATLAB软件的量化投资技术,特别是对三大类金融工具箱的介绍,具有良好的实操性。Andrew Pole阐述了统计套利的发展历程和基本原理,特别是对实施统计套利过程中所用的几类重要统计模型进行了分析。Irene Aldridge全面介绍了高频交易的历史、适用范围、实施高频交易所需的模型和关键技术,并对交易的整个流程进行了详细介绍。Barry Johnson为量化投资中的算法交易程序设计部分提供了技术基础。
1.2.2 国内研究现状
国内有关量化交易的研究主要由中国量化投资学会理事长丁鹏博士主导,涵盖多个领域。
数据挖掘
0
2024-10-31
Metabase:开源 BI 分析利器
Metabase,一款开源的商业智能(BI)分析工具,让数据分析变得更简单。无需编写代码,即可轻松连接数据库、构建直观的可视化图表,并与团队分享洞察。
统计分析
3
2024-05-19
Piwik:开源网站分析工具
Piwik是一款与Google Analytics(GA)和百度统计类似的开源网站分析系统,让您能够深入了解网站流量和用户行为。
统计分析
4
2024-05-20
Storm与Hadoop:实时数据处理能力对比分析
Storm与Hadoop在实时数据处理方面的差异
尽管Storm和Hadoop都是大数据生态系统中的重要组件,但它们在数据处理方式、应用场景和架构设计上存在显著差异,尤其在实时数据处理方面。
Hadoop
批处理导向: Hadoop的设计初衷是处理海量离线数据,其基于MapReduce的计算模型更适合处理大规模静态数据集。
高延迟: Hadoop的数据处理流程通常涉及磁盘读写,导致其处理延迟较高,难以满足实时性要求。
成熟生态: Hadoop拥有庞大的生态系统和丰富的工具库,能够支持多种数据存储、处理和分析需求。
Storm
实时流处理: Storm专为实时流数据处理而设计,能够以极低的延迟处理连续不断的数据流。
容错性强: Storm采用分布式架构,具备高可用性和容错能力,即使节点故障也能保证数据处理的连续性。
轻量级框架: 与Hadoop相比,Storm更加轻量级,部署和维护成本更低。
总结
Hadoop适用于处理大规模离线数据集,而Storm则更适合处理实时数据流。
选择合适的工具取决于具体的业务需求和数据处理场景。
Storm
3
2024-06-17
知识:赋予人类分析能力的钥匙
知识,如同开启智慧之门的钥匙,赋予人类强大的分析能力,让人明辨是非。
勤奋读书,广泛涉猎,正是获取知识的有效途径。正如古人所言:“书中自有黄金屋”。
阅读科技书籍,可以丰富知识储备,提升逻辑思维能力;沉浸于文学作品,则能提高文学鉴赏水平,培养优雅的文学情趣;
而阅读报刊,则可以拓宽视野,增长见识,扩大知识面。许多书籍更能陶冶情操,赋予我们强大的精神力量,激励我们不断前进。
Hadoop
2
2024-05-20