This seminal work by Jiawei Han and Micheline Kamber offers a comprehensive exploration of data mining principles and practices. The authors delve into the intricacies of extracting meaningful patterns and insights from large datasets, providing readers with a robust understanding of this rapidly evolving field.
Data Mining: Concepts and Techniques by Jiawei Han and Micheline Kamber
相关推荐
Data Mining Concepts and Techniques Second Edition
《数据挖掘概念与技术》(第二版)是数据科学领域的一部权威著作,由Jiawei Han和Micheline Kamber合著,全面介绍了数据挖掘的基础理论、核心技术和实际应用。
数据挖掘概述
1.1 数据挖掘的重要性
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含的信息和知识的过程。它有助于揭示数据背后的趋势和模式,支持企业决策、推动科学研究、改善公共服务等。
1.2 数据挖掘的概念
数据挖掘涵盖多个阶段,包括数据清洗、数据集成、数据转换、数据规约、数据挖掘算法、模式评估和知识表示。其目标是从数据中自动检测模式并转化为可理解的知识。
1.3 数据挖掘的对象
数据挖掘可在多种类型的数据上进行,如关系数据库、数据仓库、事务数据库、以及高级数据库系统(如空间数据库、时序数据库等)。
1.4 数据挖掘的功能
数据挖掘可用于发现各种类型的模式,如概念/类描述、关联分析、分类与预测、聚类分析、局外者分析、演变分析等。
1.5 模式的评价
模式的评价涉及兴趣度量,如支持度、置信度、新颖性和实用性等。
数据仓库与OLAP技术
2.1 数据仓库的作用
数据仓库是用于支持数据分析的大型数据库,从多个来源收集并整合数据,以满足复杂的分析需求。
数据挖掘
0
2024-11-07
Data Mining Concepts and Techniques (3rd Edition) Review
This review covers the third edition of Data Mining Concepts and Techniques. Written in accessible English, the epub format provides a pleasant reading experience in Adobe Digital Editions.
数据挖掘
3
2024-05-29
Data Mining Concepts,Models,Methods,and Algorithms
数据挖掘——概念、模型、方法和算法。PDF版本,国外经典教材,清华大学出版社出版。
数据挖掘
0
2024-11-03
Data Mining Decision Tree Techniques for Performance Analysis
该论文具体阐述了数据挖掘中的决策树算法在成绩分析中的应用,帮助观察成绩的总体情况以及成绩的分类等。
数据挖掘
0
2024-10-31
Data_Mining_Concepts_Models_Methods_Algorithms
数据挖掘——概念、模型、方法和算法 DATA MINING Concepts,Models,Methods,and Algorithms(美)Mehmed Kantardzic著,闪四清、陈茵程、雁等译,清华大学出版社
数据挖掘
0
2024-11-07
Data Mining Techniques in Coal Mine Enterprises Application and Challenges
In today's digital era, data mining has emerged as a vital tool for extracting valuable knowledge from large datasets across various industries. This is particularly crucial in resource-based sectors like coal mining, where data mining plays an essential role in improving safety, operational efficiency, and decision-making. Data mining refers to the process of applying algorithms to identify patterns, correlations, and trends within large datasets. In the context of coal mining enterprises, this technology can analyze historical data to predict potential hazards, such as gas explosions or water inflow incidents, thereby enhancing mine safety.
In terms of production optimization, data mining helps companies improve coal yield and resource utilization by identifying key factors influencing output. By analyzing data from various stages of production, mining companies can devise more efficient strategies, boosting production and reducing costs, thereby increasing profitability.
Additionally, data mining has wide-ranging applications in other aspects of coal mine management, including human resource management and equipment maintenance. By analyzing employee performance data, it helps in identifying high-performing individuals, guiding talent management and development. In equipment maintenance, data mining allows for predictive analytics, identifying potential failures before they occur, thus reducing downtime and minimizing operational disruptions.
Despite its numerous benefits, the practical implementation of data mining in coal mining enterprises faces several challenges, such as data quality control, model selection, and result interpretation. Data quality is crucial to ensuring accurate and reliable results, necessitating robust data management systems. Moreover, the selection and optimization of mining-specific algorithms require continuous refinement to achieve optimal outcomes. The ultimate goal of data mining is to translate analytical results into actionable insights, requiring companies to develop mechanisms for quick and accurate decision-making.
In summary, the application of data mining in coal mining enterprises is a complex system requiring a strategic approach. It involves preparing for organizational changes, upgrading technical capabilities, and fostering talent and cultural development. As technology continues to advance, the role of data mining will undoubtedly expand, offering new opportunities for efficiency and safety in the mining industry.
数据挖掘
0
2024-11-05
Data Mining Principles
数据挖掘原理是指从大量的数据中提取有价值的信息和知识的过程。这个过程通常包括数据的清洗、集成、选择、变换、挖掘和评估等多个步骤。通过运用统计学、机器学习和数据库系统等技术,数据挖掘能够识别数据中的模式和关系,为决策提供支持。
数据挖掘
0
2024-10-31
Data Warehouse and Data Mining Overview
数据仓库与数据挖掘是信息技术领域中的重要组成部分,尤其在当今大数据时代,这两个概念的重要性日益凸显。华北电力大学开设的这门研究生课程,由郑玲老师主讲,深入讲解这两方面的理论与实践。数据仓库(Data Warehouse)是企业级的信息系统,用于存储历史数据并支持决策分析。它通过集成来自不同业务系统的数据,提供一致、稳定且易于分析的数据视图。数据仓库的设计通常包括数据源、数据清洗、数据转换、数据加载和数据展现五个阶段。其中,数据源是各种业务系统中的原始数据;数据清洗是去除数据中的错误、不一致和冗余;数据转换则将数据转换为适合分析的格式;数据加载将处理后的数据加载到数据仓库中;数据展现使用户能通过报表或仪表板访问和理解数据。数据挖掘(Data Mining)则是从大量数据中发现有意义模式的过程。它利用统计学、机器学习和人工智能技术,揭示隐藏在数据中的关联、趋势和规律。常见的数据挖掘方法包括分类、聚类、关联规则、序列模式、异常检测和预测等。例如,分类是根据已知特征将数据分为预定义类别;聚类则是无监督学习,依据相似性将数据分组;关联规则发现项集之间的频繁模式;序列模式分析时间序列数据中的规律;异常检测识别出与常规行为不同的数据点;预测则用于推测未来的趋势。在华北电力大学的这门课程中,郑玲老师的课件可能会涵盖数据仓库的体系架构、OLAP(在线分析处理)、数据集市、ETL(提取、转换、加载)过程,以及数据挖掘的算法如决策树、神经网络、支持向量机、聚类算法等。同时,课程可能还会讨论数据预处理、数据质量保证、数据安全性、数据仓库的性能优化,以及数据挖掘的应用案例,如市场分析、客户细分、风险评估等。PPT文件“1-老师课件”可能包含了课程大纲、重要概念解释、关键理论的可视化展示、实际案例分析等内容,对于学生理解和掌握数据仓库与数据挖掘的核心概念和技能至关重要。通过学习这门课程,学生不仅能够理解数据仓库的构建原理,还能掌握如何运用数据挖掘技术进行有效的数据分析,这对于他们在未来的工作中解决实际问题,提升企业的决策效率具有极大的价值。
数据挖掘
0
2024-11-03
Data Clustering Analysis Techniques
数据聚类是数据分析和数据挖掘领域的一个核心概念,它涉及将相似的数据项目分组在一起的过程,基于项目之间的相似度或差异度的度量。聚类分析对于探索性数据分析非常有用,可以帮助生成对数据的假设。数据聚类的过程可以被分为多个阶段,包括数据准备和属性选择、相似度度量选择、算法和参数选择、聚类分析以及结果验证。
在数据准备和属性选择阶段,需要对数据进行清洗、转换,并从中选择对聚类分析有意义的属性。例如,通过标准化处理大型特征,可以减少偏见。特征选择是将选定的特征存储在向量中,以便用作相似度或差异度的度量。特征向量可以包含连续值或二进制值,例如在某些情况下,品牌、类型、尺寸范围、宽度、重量和价格可以构成特征向量。维度缩减和采样在处理高维数据时特别重要,可以使用主成分分析(PCA)、多维尺度分析(MDS)、FastMap等算法将数据投影到低维空间。
对于大型数据集,可以通过较小的随机样本进行聚类,同时采样也用于某些算法的种子设定。在相似度度量方面,通常使用各种距离度量方法,如明可夫斯基度量,这是基于栅格上距离的常识概念。这些度量方法对于紧凑孤立的群集效果良好,但如果数据集中存在“大规模”特征,可能会对这些特征赋予过大的权重。在聚类之前进行缩放或标准化可以缓解这种情况。马氏距离考虑了特征之间的线性相关性,并在距离计算中包含协方差矩阵,使得如果特征向量来自同一分布,则该距离退化为欧几里得距离。如果协方差矩阵是对角的,则称为标准化欧几里得距离。余弦距离计算两个特征向量之间的夹角的余弦值,在文本挖掘中经常使用,尤其是在特征向量非常大但稀疏的情况。皮尔逊相关系数是一种衡量两个随机变量线性相关程度的度量。
层次聚类是聚类算法的一种,它通过计算距离矩阵并迭代地合并最相似的聚类来构建一个聚类层次结构。层次聚类可以是自底向上的凝聚方法,也可以是自顶向下的分裂方法。聚类算法的参数选择对于聚类质量至关重要。在聚类分析完成后,需要对结果进行验证,以确保聚类是有意义的,并且满足数据分析的目标。聚类的用途广泛,例如在市场细分、社交网络分析、图像分割等领域都有应用。聚类分析还与其他技术结合使用,如与分类算法相结合来改进机器学习模型的性能。
算法与数据结构
0
2024-10-31